Login | Register

Modification of Titanium Dioxide for Photocatalytic Degradation of Indoor Volatile Organic Compounds: Under UV and Visible Light

Title:

Modification of Titanium Dioxide for Photocatalytic Degradation of Indoor Volatile Organic Compounds: Under UV and Visible Light

Shayegan, Zahra (2020) Modification of Titanium Dioxide for Photocatalytic Degradation of Indoor Volatile Organic Compounds: Under UV and Visible Light. PhD thesis, Concordia University.

[thumbnail of Shayegan_PhD_S2021.pdf]
Preview
Text (application/pdf)
Shayegan_PhD_S2021.pdf - Accepted Version
Available under License Spectrum Terms of Access.
15MB

Abstract

The indoor air quality (IAQ) concern has risen since people spend most of their time (>90%) in indoor environments. Volatile organic compounds (VOCs) are categorized as a major group of gas pollutants. Indoor VOCs, known as hazardous compounds with several proven adverse health effects. Among various purification techniques, a heterogeneous photocatalytic oxidation process (PCO) is a promising technology for removing indoor VOC contaminants. Titanium dioxide (TiO2) is the leading candidate for PCO given its unique properties. However, no TiO2-based photocatalysts completely satisfy all practical requirements, considering the photoexcited charge carriers’ short lifetime and a wide band gap requiring ultraviolet (UV) radiation. Moreover, the application of PCO for VOCs degradation is greatly hindered at high humidity levels.
Herein, TiO2 modification techniques that include approaches for overcoming the inherent TiO2 limitations and improving the photocatalytic degradation of VOCs are studied. In this research, strategies for improving TiO2 photocatalyst activities by doping with different metal and/or non-metal ions as well as surface modification have been examined.
Accordingly, the adsorption capacity and photocatalytic activity of P25 and surface fluorinated P25 coated on nickel foam were evaluated for VOCs removal. In addition, the photoactivity of visible-light-driven photocatalysts including; anatase/rutile carbon-doped P25, anatase/brookite cerium-doped TiO2, and anatase/brookite iron-doped TiO2 coated on nickel foam were evaluated for degradation of VOCs under both UV and visible light irradiation. Surface fluorination was then applied to reduce the surface hydrophilicity of Ce-TiO2 and Fe-TiO2 photocatalysts with the optimum Ce and Fe contents. Notably, their photocatalytic performance was investigated in continuous flow mode-of-operation reactors with small residence time, different relative humidity levels, and low-level inlet contaminant concentration. These techniques can improve PCO performance through the following mechanisms: i) by introducing an electron capturing level in the band gap that would generate some defects in the TiO2 lattice and help capture charge carriers and can also be excited under visible irradiation; ii) by slowing down the charge carrier recombination rate and increasing VOCs degradation; and iii) by reducing the surface hydrophilicity, which increases VOCs’ adsorption capacity at high humid conditions.

Divisions:Concordia University > Gina Cody School of Engineering and Computer Science > Building, Civil and Environmental Engineering
Item Type:Thesis (PhD)
Authors:Shayegan, Zahra
Institution:Concordia University
Degree Name:Ph. D.
Program:Civil Engineering
Date:22 June 2020
Thesis Supervisor(s):Haghighat, Fariborz and Lee, Chang-Seo
ID Code:987666
Deposited By: Zahra Shayegan
Deposited On:29 Jun 2021 20:45
Last Modified:29 Jun 2021 20:45
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top