Login | Register

The Adaptation of Lower Leg Muscles during Gait to Galvanic Vestibular Stimulation


The Adaptation of Lower Leg Muscles during Gait to Galvanic Vestibular Stimulation

Hindle, Meaghan, Dover, Geoffrey, Dakin, Christopher and Forbes, Patrick (2021) The Adaptation of Lower Leg Muscles during Gait to Galvanic Vestibular Stimulation. Masters thesis, Concordia University.

[thumbnail of Hindle_MSc_S2022.pdf]
Text (application/pdf)
Hindle_MSc_S2022.pdf - Accepted Version
Available under License Spectrum Terms of Access.


Fall prevention is a growing concern as our elderly population reflects a greater proportion of our population. Some muscles have been shown to exhibit a decrease in response as they become accustomed to certain types of stimulation and perturbations, dependant on the task and the muscle observed. This is possible by analyzing the relationship between muscle activity and stimulation in human participants.

We measured the response to galvanic vestibular stimulation in the medial gastrocnemius and soleus muscles. Galvanic vestibular stimulation is when electric current is sent through pads placed over the mastoid processes on each side, which are found behind the ears. This induces a nerve impulse to be generated and sent from the vestibular nerve to the appropriate processing centers in the brain. This results in the brain thinking the body is losing its balance, since they head is being stimulated to change its orientation, causing a sway in the posture.

15 healthy participants were recruited from the local university, and screened for any neurological disease. The goal was to determine if the medial gastrocnemius and soleus muscles also experience a decrease in response, over one hour of walking with the stimulation on a treadmill. Through the analysis of the relationship between muscle activity and stimulation, we did not find any significant decrease in muscle activity over time. The results cannot however be widespread to other muscles or other tasks, and so more research is needed to better understand how muscle response to dynamic tasks is organized.

Divisions:Concordia University > Faculty of Arts and Science > Health, Kinesiology and Applied Physiology
Item Type:Thesis (Masters)
Authors:Hindle, Meaghan and Dover, Geoffrey and Dakin, Christopher and Forbes, Patrick
Institution:Concordia University
Degree Name:M. Sc.
Program:Health and Exercise Science
Date:July 2021
Thesis Supervisor(s):Dover, Geoffrey and Dakin, Christopher and Forbes, Patrick
Keywords:gait, balance, vestibular stimulation, neuromechanics
ID Code:988625
Deposited By: Meaghan Hindle
Deposited On:16 Jun 2022 14:43
Last Modified:16 Jun 2022 14:43


1. Dakin CJ, Inglis JT, Chua R, Blouin J-S. Muscle-specific modulation of vestibular reflexes with increased locomotor velocity and cadence. J Neurophysiol. 2013;110(1):86-94. doi:10.1152/jn.00843.2012
2. Blouin J-S, Dakin CJ, van den Doel K, Chua R, McFadyen BJ, Inglis JT. Extracting phase-dependent human vestibular reflexes during locomotion using both time and frequency correlation approaches. J Appl Physiol. 2011;111(5):1484-1490. doi:10.1152/japplphysiol.00621.2011
3. Hannan KB, Todd MK, Pearson NJ, Forbes PA, Dakin CJ. Vestibular attenuation to random-waveform galvanic vestibular stimulation during standing and treadmill walking. Sci Rep. 2021;11(1):8127. doi:10.1038/s41598-021-87485-4
4. Ribeiro F, Oliveira J. Aging effects on joint proprioception: the role of physical activity in proprioception preservation. Eur Rev Aging Phys Act. 2007;4(2):71-76. doi:10.1007/s11556-007-0026-x
5. Liu J-X, Eriksson P-O, Thornell L-E, Pedrosa-Domellöf F. Fiber Content and Myosin Heavy Chain Composition of Muscle Spindles in Aged Human Biceps Brachii. J Histochem Cytochem. 2005;53(4):445-454. doi:10.1369/jhc.4A6257.2005
6. Swash M, Fox KP. The effect of age on human skeletal muscle studies of the morphology and innervation of muscle spindles. Journal of the Neurological Sciences. 1972;16(4):417-432. doi:10.1016/0022-510X(72)90048-2
7. Hb S, Rl B, Sd C. Age-related decline in proprioception. Clin Orthop Relat Res. 1984;(184):208-211.
8. Miwa T, Miwa Y, Kanda K. Dynamic and static sensitivities of muscle spindle primary endings in aged rats to ramp stretch. Neuroscience Letters. 1995;201(2):179-182. doi:10.1016/0304-3940(95)12165-X
9. Jeanmarie R Burke, Mary C Schutten, David M Koceja, Gary Kamen. Age-dependent effects of muscle vibration and the Jendrassik maneuver on the patellar tendon reflex response. Archives of Physical Medicine and Rehabilitation. 1996;77:600-604.
10. Nakamura S, Akiguchi I, Kameyama M, Mizuno N. Age-related changes of pyramidal cell basal dendrites in layers III and V of human motor cortex: A quantitative Golgi study. Acta Neuropathol. 1985;65(3-4):281-284. doi:10.1007/BF00687009
11. Scheibel ME, Lindsay RD, Tomiyasu U, Scheibel AB. Progressive dendritic changes in aging human cortex. Experimental Neurology. 1975;47(3):392-403. doi:10.1016/0014-4886(75)90072-2
12. Masliah E, Mallory M, Hansen L, DeTeresa R, Terry RD. Quantitative synaptic alterations in the human neocortex during normal aging. Neurology. 1993;43(1 Part 1):192-192. doi:10.1212/WNL.43.1_Part_1.192
13. Strong R. Neurochemical changes in the aging human brain: implications for behavioral impairment and neurodegenerative disease. Geriatrics. 1998;53 Suppl 1:S9-12.
14. WHO | WHO: Number of people over 60 years set to double by 2050; major societal changes required. WHO. Accessed April 1, 2021. http://www.who.int/entity/mediacentre/news/releases/2015/older-persons-day/en/
15. World Health Organization, ed. WHO Global Report on Falls Prevention in Older Age. World Health Organization; 2008.
16. Lowry KA, Vallejo AN, Studenski SA. Successful Aging as a Continuum of Functional Independence: Lessons from Physical Disability Models of Aging. Aging Dis. 2011;3(1):5-15.
17. Zhang S, Xu W, Zhu Y, Tian E, Kong W. Impaired Multisensory Integration Predisposes the Elderly People to Fall: A Systematic Review. Front Neurosci. 2020;14. doi:10.3389/fnins.2020.00411
18. Chambers AJ, Cham R. Slip-related muscle activation patterns in the stance leg during walking. Gait & Posture. 2007;25(4):565-572. doi:10.1016/j.gaitpost.2006.06.007
19. Graham DF, Carty CP, Lloyd DG, Barrett RS. Biomechanical predictors of maximal balance recovery performance amongst community-dwelling older adults. Experimental Gerontology. 2015;66:39-46. doi:10.1016/j.exger.2015.04.006
20. Carty CP, Mills P, Barrett R. Recovery from forward loss of balance in young and older adults using the stepping strategy. Gait & Posture. 2011;33(2):261-267. doi:10.1016/j.gaitpost.2010.11.017
21. Woollacott M, Shumway-Cook A. Attention and the control of posture and gait: a review of an emerging area of research. Gait & Posture. 2002;16(1):1-14. doi:10.1016/S0966-6362(01)00156-4
22. Tideiksaar R. Preventing falls: how to identify risk factors, reduce complications. Geriatrics. 1996;51(2):43-46, 49-50, 53, quiz 54-55.
23. Purves D, Augustine GJ, Fitzpatrick D, et al. The Vestibular System. Neuroscience 2nd edition. Published online 2001. Accessed February 10, 2021. https://www.ncbi.nlm.nih.gov/books/NBK10819/
24. Khosravi‐Hashemi N, Forbes PA, Dakin CJ, Blouin J-S. Virtual signals of head rotation induce gravity-dependent inferences of linear acceleration. The Journal of Physiology. 2019;597(21):5231-5246. doi:https://doi.org/10.1113/JP278642
25. Arntz AI, van der Putte DAM, Jonker ZD, Hauwert CM, Frens MA, Forbes PA. The Vestibular Drive for Balance Control Is Dependent on Multiple Sensory Cues of Gravity. Front Physiol. 2019;10. doi:10.3389/fphys.2019.00476
26. Day BL, Guerraz M. Feedforward versus feedback modulation of human vestibular-evoked balance responses by visual self-motion information. J Physiol. 2007;582(Pt 1):153-161. doi:10.1113/jphysiol.2007.132092
27. Purves D, Augustine GJ, Fitzpatrick D, et al. The Otolith Organs: The Utricle and Sacculus. Neuroscience 2nd edition. Published online 2001. Accessed February 22, 2021. https://www.ncbi.nlm.nih.gov/books/NBK10792/
28. Information NC for B, Pike USNL of M 8600 R, MD B, Usa 20894. How Does Our Sense of Balance Work? Institute for Quality and Efficiency in Health Care (IQWiG); 2017. Accessed February 22, 2021. https://www.ncbi.nlm.nih.gov/books/NBK279394/
29. Day BL, Séverac Cauquil A, Bartolomei L, Pastor MA, Lyon IN. Human body-segment tilts induced by galvanic stimulation: a vestibularly driven balance protection mechanism. J Physiol. 1997;500(Pt 3):661-672.
30. Fitzpatrick RC, Day BL. Probing the human vestibular system with galvanic stimulation. J Appl Physiol. 2004;96(6):2301-2316. doi:10.1152/japplphysiol.00008.2004
31. Staffan Lund, Catharina Broberg. Effects of different head positions on postural sway in man induced by a reproducible vestibular error signal. Acta Physiologica Scandinavica. 1983;117:307-309.
32. Reynolds RF. Where’s your head at? An illusion of head orientation which reveals dissociation of proprioceptive signals for balance versus perception. The Journal of Physiology. 2017;595(8):2407-2408. doi:https://doi.org/10.1113/JP273874
33. Mackenzie SW, Reynolds RF. Differential effects of vision upon the accuracy and precision of vestibular-evoked balance responses. The Journal of Physiology. 2018;596(11):2173-2184. doi:https://doi.org/10.1113/JP275645
34. Forbes PA, Luu BL, Van der Loos HFM, Croft EA, Inglis JT, Blouin J-S. Transformation of Vestibular Signals for the Control of Standing in Humans. J Neurosci. 2016;36(45):11510-11520. doi:10.1523/JNEUROSCI.1902-16.2016
35. Mian OS, Day BL. Violation of the Craniocentricity Principle for Vestibularly Evoked Balance Responses under Conditions of Anisotropic Stability. J Neurosci. 2014;34(22):7696-7703. doi:10.1523/JNEUROSCI.0733-14.2014
36. Fitzpatrick R, Burke D, Gandevia SC. Task-dependent reflex responses and movement illusions evoked by galvanic vestibular stimulation in standing humans. The Journal of Physiology. 1994;478(2):363-372. doi:https://doi.org/10.1113/jphysiol.1994.sp020257
37. Britton TC, Day BL, Brown P, Rothwell JC, Thompson PD, Marsden CD. Postural electromyographic responses in the arm and leg following galvanic vestibular stimulation in man. Exp Brain Res. 1993;94(1):143-151. doi:10.1007/BF00230477
38. Smith CP, Allsop JE, Mistry M, Reynolds RF. Co-ordination of the upper and lower limbs for vestibular control of balance. The Journal of Physiology. 2017;595(21):6771-6782. doi:https://doi.org/10.1113/JP274272
39. Smith CP, Reynolds RF. Vestibular feedback maintains reaching accuracy during body movement. The Journal of Physiology. 2017;595(4):1339-1349. doi:https://doi.org/10.1113/JP273125
40. Dakin CJ, Héroux ME, Luu BL, Inglis JT, Blouin J-S. Vestibular contribution to balance control in the medial gastrocnemius and soleus. J Neurophysiol. 2016;115(3):1289-1297. doi:10.1152/jn.00512.2015
41. Magnani RM, Bruijn SM, Dieën JH van, Forbes PA. Stabilization demands of walking modulate the vestibular contributions to gait. bioRxiv. Published online October 2, 2020:2020.09.30.319434. doi:10.1101/2020.09.30.319434
42. Samoudi G, Jivegård M, Mulavara AP, Bergquist F. Effects of Stochastic Vestibular Galvanic Stimulation and LDOPA on Balance and Motor Symptoms in Patients With Parkinson’s Disease. Brain Stimulation. 2015;8(3):474-480. doi:10.1016/j.brs.2014.11.019
43. Fitzpatrick R, Burke D, Gandevia SC. Loop gain of reflexes controlling human standing measured with the use of postural and vestibular disturbances. Journal of Neurophysiology. 1996;76(6):3994-4008. doi:10.1152/jn.1996.76.6.3994
44. Ivanenko Y, Gurfinkel VS. Human Postural Control. Front Neurosci. 2018;12. doi:10.3389/fnins.2018.00171
45. Carpenter MG, Allum JHJ, Honegger F. Directional sensitivity of stretch reflexes and balance corrections for normal subjects in the roll and pitch planes. Experimental Brain Research. 1999;129(1):93-113. doi:10.1007/s002210050940
46. Cano Porras D, Jacobs JV, Inzelberg R, Bahat Y, Zeilig G, Plotnik M. Patterns of whole-body muscle activations following vertical perturbations during standing and walking. J NeuroEngineering Rehabil. 2021;18(1):75. doi:10.1186/s12984-021-00836-0
47. Jung J, Link to external site this link will open in a new window, Kim K, et al. Movement Time of Lower Trunk Muscles during Dynamic Postural Control in Response to a Sudden Visual Stimulus during Walking: A Pilot Study. International Journal of Environmental Research and Public Health. 2021;18(9):5015. doi:http://dx.doi.org.lib-ezproxy.concordia.ca/10.3390/ijerph18095015
48. Terry K, Sinitski EH, Dingwell JB, Wilken JM. Amplitude effects of medio-lateral mechanical and visual perturbations on gait. Journal of Biomechanics. 2012;45(11):1979-1986. doi:10.1016/j.jbiomech.2012.05.006
49. van der Burg JCE, Pijnappels M, van Dieën JH. Out-of-plane trunk movements and trunk muscle activity after a trip during walking. Exp Brain Res. 2005;165(3):407-412. doi:10.1007/s00221-005-2312-z
50. Allum JHJ, Carpenter MG, Honegger F, Adkin AL, Bloem BR. Age-dependent variations in the directional sensitivity of balance corrections and compensatory arm movements in man. The Journal of Physiology. 2002;542(2):643-663. doi:https://doi.org/10.1113/jphysiol.2001.015644
51. Etienne Guillaud, Philippe Seyres, Gregory Barriere, Vincent Jecko, Sandrine S Bertrand, Jean-Rene Cazalets. Locomotion and dynamic posture: neuro-evolutionary basis of bipedal gait. Clinical Neurophysiology. 2020;50:467-477. doi:https://doi.org/10.1016/j.neucli.2020.10.012
52. Balter SGT, Stokroos RJ, Eterman RMA, Paredis SAB, Orbons J, Kingma H. Habituation to Galvanic Vestibular Stimulation. Acta Oto-Laryngologica. 2004;124(8):941-945. doi:10.1080/00016480410017350
53. Jennica L. Roche, Daniel P. Steed, Mark S. Redfern. HABITUATION TO GALVANIC VESTIBULAR STIMULATION DURING GAIT. American Society of Biomechanics Conference. 2019;34th Annual Meeting 2010(Abstract 86). web: http://hmbl.bioe.pitt.edu
54. Dilda V, Morris TR, Yungher DA, MacDougall HG, Moore ST. Central Adaptation to Repeated Galvanic Vestibular Stimulation: Implications for Pre-Flight Astronaut Training. PLOS ONE. 2014;9(11):e112131. doi:10.1371/journal.pone.0112131
55. Forbes PA, Vlutters M, Dakin CJ, Kooij H van der, Blouin J-S, Schouten AC. Rapid limb-specific modulation of vestibular contributions to ankle muscle activity during locomotion. The Journal of Physiology. 2017;595(6):2175-2195. doi:https://doi.org/10.1113/JP272614
56. Zhan Y, Halliday D, Jiang P, Liu X, Feng J. Detecting time-dependent coherence between non-stationary electrophysiological signals—A combined statistical and time–frequency approach. Journal of Neuroscience Methods. 2006;156(1):322-332. doi:10.1016/j.jneumeth.2006.02.013
57. Johansson R, Magnusson M, Fransson PA. Galvanic vestibular stimulation for analysis of postural adaptation and stability. IEEE Trans Biomed Eng. 1995;42(3):282-292. doi:10.1109/10.364515
58. Morton SM, Bastian AJ. Cerebellar Contributions to Locomotor Adaptations during Splitbelt Treadmill Walking. J Neurosci. 2006;26(36):9107-9116. doi:10.1523/JNEUROSCI.2622-06.2006
59. Bastian AJ. Learning to predict the future: the cerebellum adapts feedforward movement control. Current Opinion in Neurobiology. 2006;16(6):645-649. doi:10.1016/j.conb.2006.08.016
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top