Login | Register

Intricacies of Modeling and Analysis of DC Characteristics of Single- and Multi-Channel Laterally-Gated AlGaN/GaN Heterojunction Field Effect Transistors

Title:

Intricacies of Modeling and Analysis of DC Characteristics of Single- and Multi-Channel Laterally-Gated AlGaN/GaN Heterojunction Field Effect Transistors

Buitrago, Mauricio (2021) Intricacies of Modeling and Analysis of DC Characteristics of Single- and Multi-Channel Laterally-Gated AlGaN/GaN Heterojunction Field Effect Transistors. Masters thesis, Concordia University.

[thumbnail of Buitrago_MASc_F2021.pdf]
Preview
Text (application/pdf)
Buitrago_MASc_F2021.pdf - Accepted Version
Available under License Spectrum Terms of Access.
7MB

Abstract

The present thesis offers a detailed description about the modeling of single- and multi-channel laterally-gated AlGaN/GaN heterojunction field effect transistors (HFETs) through device investigation in the Comsol Multiphysics® simulation environment. After two decades of research, studying GaN HFETs continues to be a very interesting area of investigation. This is because of the interest in using these devices in high frequency applications as well as low frequency power management. Laterally-gated GaN HFETs have recently drawn the attention of semiconductor devices engineers that search for obtaining higher current densities, higher linearity, better stability at higher frequencies, and better power management while increasing packing density.
The presented simulations offer an in-depth analysis of the observations made at thermal equilibrium and the results obtained for the DC characteristics of these devices, along with the comparison of these characteristics with those of the top-gated varieties. These observations demonstrate the improved effectiveness of lateral gating in controlling multiple vertically stacked 2DEG channels. Although there is improvement on several parameters like current density, linearity, and ON resistance (Ron), as the number of channels increases, simulations demonstrate a certain degree of degradation of drain-induced barrier lowering (DIBL) and knee voltage (Vknee). For these simulations, the devices’ self-heating at higher current densities was not considered. Also, the ohmic contacts were assumed to be ideal.

Divisions:Concordia University > Gina Cody School of Engineering and Computer Science > Electrical and Computer Engineering
Item Type:Thesis (Masters)
Authors:Buitrago, Mauricio
Institution:Concordia University
Degree Name:M.A. Sc.
Program:Electrical and Computer Engineering
Date:3 August 2021
Thesis Supervisor(s):Valizadeh, Pouya
Keywords:AlGaN/GaN heterojunction field effect transistor, laterally-gated HFET, single-channel, multi-channel, electric field, two-dimensional electron gas, Ga-face, N-face, polarization, linearity, gate voltage swing figure of merit, Comsol, gate transconductance, DC characteristics, thermal equilibrium, modeling.
ID Code:988754
Deposited By: Mauricio Buitrago
Deposited On:29 Nov 2021 16:30
Last Modified:29 Nov 2021 16:30

References:

[1] M. Asif Khan, A. Bhattarai, J. N. Kuznia, and D. T. Olson, "High electron mobility transistor based on a GaN-AlxGa1-xN heterojunction," Applied Physics Letters, vol. 63, no. 9, pp. 1214 - 1215, 1993.
[2] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck, "Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures," J. Appl. Phys., vol. 85, no. 6, pp. 3222-3233, 15 March 1999.
[3] P. Valizadeh, Field Effect Transistors, A Comprehensive Overview: From Basic Concepts to Novel Technologies, Wiley, February 2016.
[4] O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, A. J. Sierakowski, W. J. Schaff, L. F. Eastman, R. Dimitrov, A. Mitchell, and M. Stutzmann, "Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures," J. Appl. Phys., vol. 87, no. 1, pp. 334-344, 2000.
[5] T. Palacios, A. Chakraborty, S. Rajan, C. Poblenz, S. Keller, S. Denbaars, J. Speck, and U. Mishra, "High-power AlGaN/GaN HEMTs for Ka-band applications," IEEE Electron Device Letters, vol. 26, no. 11, pp. 781-783, 2005.
[6] M. Micovic, A. Kurdoghlian, A. Margomenos, D. F. Brown, K. Shinohara, S. Burnham, I. Milosavljevic, R. Bowen, A. Williams, P. Hashimoto, R. Grabar, C. Butler, A. Schmitz, P. J. Willadsen, and D. H. Chow, "92–96 GHz GaN power amplifiers," EEE MTT-S Int. Microw. Symp. Dig., pp. 1-3, 2012.
[7] B. Romanczyk, M. Guidry, S. Wienecke, H. Li, E. Ahmadi, X. Zheng, S. Keller, and U. K. Mishra, "W-band N-polar GaN MISHEMTs with high power and record 27.8% efficiency at 94 GHz," IEDM Tech. Dig., p. 3.5.1—3.5.4, 2016.
[8] K. Inoue, H. Yamamoto, K. Nakata, F. Yamada, T. Yamamoto, and S. Sano, "Linearity Improvement of GaN HEMT for RF Power Amplifiers," Proc. IEEE Compound Semiconductor Integr. Circuit Symp. (CSICS), pp. 1-4, 2013.
[9] S. Joglekar, U. Radhakrishna, D. Piedra, D. Antoniadis, and T. Palacios, "Large signal linearity enhancement of AlGaN/GaN high electron mobility transistors by device-level Vt engineering for transconductance compensation," IEDM Tech. Dig., p. 25.3.1—25.3.4, 2017.
[10] D. S. Lee, H. Wang, A. Hsu, M. Azize, O. Laboutin, Y. Cao, J. W. Johnson, E. Beam, A. Ketterson, M. L. Schuette, P. Saunier, and T. Palacios, "Nanowire Channel InAlN/GaN HEMTs With High Linearity of gm and fT," IEEE Electron Device Letters, vol. 34, no. 8, pp. 969-971, 2013.
[11] K. Zhang, Y. Kong, G. Zhu, J. Zhou, X. Yu, C. Kong, Z. Li, and T. Chen, "High-Linearity AlGaN/GaN FinFETs for Microwave Power Applications," IEEE Electron Device Letters, vol. 38, no. 5, pp. 615-618, 2017.
[12] J. Joh and J. A. del Alamo, "Mechanisms for Electrical Degradation of GaN High-Electron Mobility Transistors," IEDM Tech. Dig., pp. 1-4, 2006.
[13] T. Fang, R. Wang, H. Xing, S. Rajan, and D. Jena, "Effect of Optical Phonon Scattering on the Performance of GaN Transistors," IEEE Electron Device Letters, vol. 33, no. 5, p. 709—711, 2012.
[14] S. Bajaj, O. F. Shoron, P. S. Park, S. Krishnamoorthy, F. Akyol, T.-H. Hung, S. Reza, E. M. Chumbes, J. Khurgin, and S. Rajan, "Density-dependent electron transport and precise modeling of GaN high electron mobility transistors," Applied Physics Letters, vol. 107, no. 15, pp. 153504-1 - 153504-2, 2015.
[15] K. Shinohara, C. King, A. D. Carter, E. J. Regan, A. Arias, J. Bergman, M. Urteaga, and B. Brar, "GaN-Based Field-Effect Transistors With Laterally Gated Two-Dimensional Electron Gas," IEEE Electron Device Lett., vol. 39, no. 3, p. 417–420, March 2018.
[16] O. Odabası, D. Yılmaz, E. Aras, K. Asan, S. Zafar, B. Akoglu, B. Bütün, and E. Özbay, "AlGaN/GaN-Based Laterally Gated High-Electron-Mobility Transistors With Optimized Linearity," IEEE Electron Device Letters, vol. 68, no. 3, pp. 1016 - 1023, 2021.
[17] M. Samizadeh Nikoo, G. Santoruvo, C. Erine, A. Jafari, and E. Matioli, "On the Dynamic Performance of Laterally Gated Transistors," IEEE Electron Device Letters, vol. 40, no. 7, p. 1171—1174, July 2019.
[18] G. Santoruvo and E. Matioli, "In-Plane-Gate GaN Transistors for High-Power RF Applications," IEEE Electron Device Lett., vol. 38, no. 10, p. 1413–1416, October 2017.
[19] J. Ma, C. Erine, P. Xiang, K. Cheng, and E. Matioli, "Multi-channel tri-gate normally-on/off AlGaN/GaN MOSHEMTs on Si substrate with high breakdown voltage and low ON-resistance," Applied Physics Letters, vol. 113, no. 24, pp. 242102-1 - 242102-5, 2018.
[20] L. Nela, J. Ma, C. Erine, P. Xiang, T. Shen, V. Tileli, T. Wang, K. Cheng, and E. Matioli, "Multi-channel nanowire devices for efficient power conversion," Nature Electronics, no. 4, p. 284–290, 2021.
[21] J. Ma, C. Erine, M. Zhu, N. Luca, P. Xiang, K. Cheng, and E. Matioli, "1200 V Multi-Channel Power Devices with 2.8 2.8 Ω·mm ON-Resistance," IEEE IEDM, p. 4.1.1—4.1.4, 2019.
[22] C. Erine, J. Ma, G. Santoruvo, and E. Matioli, "Multi-channel AlGaN/GaN in-plane-gate field-effect transistors," IEEE Electron Device Lett., vol. 41, no. 3, p. 321–324, March 2020.
[23] https://www.comsol.com, accessed May 2019.
[24] F. Yun, M. A. Reshchikov, L. He, T. King, H. Morkoc, S. W. Novak, and L. Wei, "Energy band bowing parameter in AlxGa1-xN alloys," Journal of Applied Physics, vol. 92, no. 8, pp. 4837 - 4839, 2002.
[25] M. E. Levinshtein, S. L. Rumyantsev, and M. S. Shur, Properties of Advanced Semiconductor Materials, New York: John Wiley & Sons, 2011.
[26] M. A. Khan, J. M. Van Hove, J. N. Kuznia, and D. T. Olson, "High electron mobility GaN/AlxGa1−xN heterostructures grown by low-pressure metalorganic chemical vapor deposition," Applied Physics Letters, vol. 58, no. 21, pp. 2408-2410, 1991.
[27] W. H. Sun, J. W. Yang, J. P. Zhang, M. E. Gaevski, C. Q. Chen, J. W. Li, Z. Gong, M. Su, and M. A. Khan, "n-Al0.75Ga0.25N epilayers for 250 nm emission ultraviolet light emitting diodes," physica status solidi (c), vol. 2, no. 7, pp. 2083-2086, 2005.
[28] Y. Xi, K. Chen, F. Mont, J. Kim, E. Schubert, W. Liu, X. Li, and J. Smart, "Comparative study of n-type AlGaN grown on sapphire by using a superlattice layer and a low-temperature AlN interlayer," Journal of Crystal Growth, vol. 299, no. 1, pp. 59-62, 2007.
[29] T. Tanaka, A. Watanabe, H. Amano, Y. Kobayashi, I. Akasaki, S. Yamazaki, and M. Koike, "p-type conduction in Mg-doped GaN and Al0.08Ga0.92N grown by metalorganic vapor phase epitaxy," Applied Physics Letters, vol. 65, no. 5, pp. 593-594, 1994.
[30] S.-R. Jeon, Z. Ren, G. Cui, J. Su, M. Gherasimova, J. Han, H.-K. Cho, and L. Zhou, "Investigation of Mg doping in high-Al content p-type AlxGa1−xN (0.3<x<0.5)," Applied Physics Letters, vol. 86, no. 8, pp. 082107-1 - 082107-3, 2005.
[31] E. F. Schubert, "Delta doping of III-V compound semiconductors: Fundamentals and device applications," J Vac Sci & Technol A, vol. 8, no. 3, pp. 2980-2996, 1990.
[32] F. Bernardini, V. Fiorentini, and D. Vanderbilt, "Spontaneous polarization and piezoelectric constants of III-V nitrides," Physical Review B, vol. 56, no. 16, p. R10024—R10027, 1997.
[33] K. Shimada, T. Sota, and K. Suzuki, "First-principles study on electronic and elastic properties of BN, AlN, and GaN," Journal of Applied Physics, vol. 84, no. 9, pp. 4951 - 4958, 1998.
[34] K. Shimada, T. Sota, K. Suzuki, and H. Okumura, "First-Principles Study on Piezoelectric Constants in Strained BN, AlN, and GaN," Japanese Journal of Applied Physics, vol. 37, no. Part 2, No. 12A, p. L1421—L1423, 1998.
[35] H. R. Mojaver, Fabrication, and Physics-Based Modeling of Polar AlGaN/GaN and AlInGaN/GaN HFETs, Montreal: Concordia University, 2018.
[36] COMSOL Multiphysics® v. 5.4, Semiconductor Module User's Guide, Part number: CM024101, Stockholm, Sweden: COMSOL AB, 2018.
[37] J. Wong, K. Shinohara, A. L. Corrion, D. F. Brown, Z. Carlos, A. Williams, Y. Tang, J. F. Robinson, I. Khalaf, H. Fung, A. Schmitz, T. Oh, S. Kim, S. Chen, S. Burnham, A. Margomenos, and M. Micovic, "HEMTs, Novel Asymmetric Slant Field Plate Technology for High-Speed Low-Dynamic Ron E/D-mode GaN," IEEE Electron Device Letters, vol. 38, no. 1, pp. 95-98, 2017.
[38] M. Allaei, M. Shalchian, and F. Jazaeri, "Modeling of Short-Channel Effects in GaN HEMTs," IEEE Transactions on Electron Devices, vol. 67, no. 8, pp. 1-7, 2020.
[39] J. Chung, J. Roberts, E. Piner, and T. Palacios, "Effect of Gate Leakage in the Subthreshold Characteristics of AlGaN/GaN HEMTs," IEEE Electron Device Letters, vol. 29, no. 11, pp. 1196-1198, 2008.
[40] S. Arulkumaran, G. I. Ng, C. M. Manojkumar, K. Ranjan, K. L. Teo, O. F. Shoron, S. Rajan, S. B. Dolmanan, and S. Tripathy, "In0.17Al0.83N/AlN/GaN Triple T-shape Fin-HEMTs with gm=646 mS/mm, ION=1.03 A/mm, IOFF=1.13 µA/mm, SS=82 mV/dec and DIBL=28 mV/V at VD=0.5 V," IEEE Electron Devices Society, p. 25.6.1—25.6.4, 2014.
[41] C. C. Hu, Modern Semiconductor Devices for Integrated Circuits, Upper Saddle River, NJ: Prentice Hall, 2010.
[42] S. Havanur, "Power MOSFET Basics: Understanding the Turn-On Process," VISHAY SILICONIX, 23 Jun 2015. https://www.vishay.com/docs/68214/turnonprocess.pdf, accessed 29 Jan 2021.
[43] D. A. Neamen, Semiconductor Physics and Devices, New York, NY: McGraw-Hill, 2012.
[44] Y.-W. Jo, D.-H. Son, C.-H. Won, K.-S. Im, J. H. Seo, I. M. Kang, and J.-H. Lee, "AlGaN/GaN FinFET with Extremely Broad Transconductance by Side-wall Wet Etch," IEEE Electron Device Letters, vol. 36, no. 10, pp. 1008-1010, 2015.
[45] T. Palacios, S. Rajan, A. Chakraborty, S. Heikman, S. Keller, S. DenBaars, and U. Mishra, "Influence of the dynamic access resistance in the gm and fT linearity of AlGaN/GaN HEMTs," IEEE Transactions on Electron Devices, vol. 52, no. 10, p. 2117—2123, 2005.
[46] Z. Zheng, W. Song, J. Lei, Q. Qian, J. Wei, M. Hua, S. Yang, L. Zhang, and K. J. Chen, "GaN HEMT With Convergent Channel for Low Intrinsic Knee Voltage," IEEE Electron Device Letters, vol. 41, no. 9, pp. 1304-1307, 2020.
[47] A. Ebbersa, D. Reutera, M. Heukenb, and A. Wiecka, "In-plane gate transistors in AlxGa1−xN/GaN heterostructures written by focused ion beams," Superlattices and Microstructures, vol. 33, p. 381–388, 2003.
[48] H. R. Mojaver, F. Manouchehri, and P. Valizadeh, "Theoretical evaluation of two dimensional electron gas characteristics of quaternary AlxInyGa1-x-yN/GaN hetero-junctions," J. Appl. Phys., vol. 119, no. 15, pp. 154502-1–154502-7, April 2016.
[49] H. R. Mojaver, J. L. Gosselin, and P. Valizadeh, "Use of a bilayer lattice-matched AlInGaN barrier for improving the channel carrier confinement of enhancement-mode AlInGaN/GaN hetero-structure field-effect transistors," J. Appl. Phys., vol. 121, no. 24, pp. 244502-1–244502-6, June 2017.
[50] K. Ohi and T. Hashizume, "Drain Current Stability, and Controllability of Threshold Voltage and Subthreshold Current in a Multi-Mesa-Channel AlGaN/GaN High Electron Mobility Transistor," Jpn. J. Appl. Phys. , vol. 48, no. 8, pp. 081002-1 - 081002-5, 2009.
[51] R. S. Howell, E. J. Stewart, R. Freitag, J. Parke, B. Nechay, H. Cramer, M. King, S. Gupta, J. Hartman, M. Snook, I. Wathuthanthri, P. Ralston, K. Renaldo, H. G. Henry, and R. C. Clarke, "The Super-Lattice Castellated Field Effect Transistor (SLCFET): A novel high performance Transistor topology ideal for RF switching," IEDM Tech. Dig., pp. 11.5.1-11.5.4, 2014.
[52] P. S. Park and S. Rajan, "Simulation of Short-Channel Effects in N- and Ga-Polar AlGaN/GaN HEMTs," IEEE Transactions on Electron Devices, vol. 58, no. 3, pp. 704-708, 2011.
[53] X.-H. Ma, M. Lü, L. Pang, Y.-Q. Jiang, J.-Z. Yang, W.-W. Chen, and X.-Y. Liu, "Kink effect in current—voltage characteristics of a GaN-based high electron mobility transistor with an AlGaN back barrier," Chinese Physics B, vol. 23, no. 2, pp. 027302-1 - 027302-5, 2014.
[54] M. Wang and K. J. Chen, "Kink Effect in AlGaN/GaN HEMTs Induced by Drain, and Gate Pumping," IEEE Electron Device Letters, vol. 32, no. 4, pp. 482-484, April 2011.
[55] S. Kasap and P. Capper, Springer Handbook of Electronic and Photonic Materials, Switzerland: Springer, 2017.
[56] H. R. Mojaver and P. Valizadeh, "Reverse Gate-Current of AlGaN/GaN HFETs: Evidence of Leakage at Mesa Sidewalls," IEEE Transactions on Electron Devices, vol. 63, no. 4, pp. 1444-1449, 2016.
[57] X. Chen, D. Lv, J. Zhang, H. Zhou, Z. Ren, C. Wang, Y. Wu, D. Wang, H. Zhang, Y. Lei, J. Zhang, and Y. Hao, "Model of Electron Population and Energy Band Diagram of Multiple-Channel GaN Heterostructures," IEEE TRANSACTIONS ON ELECTRON DEVICES, vol. 68, no. 4, pp. 1557-1562, 2021.
[58] J. Pinchbeck, K. B. Lee, S. Jiang, and P. Houston, "Dual metal gate AlGaN/GaN high electron mobility transistors with improved transconductance and reduced short channel effects," Journal of Physics, vol. 54, no. 105104, pp. 1-7, 2021.
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top