Login | Register

Cellular characterization of fibroblasts harboring variants in TRAPPC2L linked to neurodevelopmental disorders.


Cellular characterization of fibroblasts harboring variants in TRAPPC2L linked to neurodevelopmental disorders.

Al-Deri, Noraldin (2021) Cellular characterization of fibroblasts harboring variants in TRAPPC2L linked to neurodevelopmental disorders. Masters thesis, Concordia University.

[thumbnail of Al-Deri_MA_F2021.pdf]
Text (application/pdf)
Al-Deri_MA_F2021.pdf - Accepted Version
Available under License Spectrum Terms of Access.


In this thesis, I focus on TRAPPC2L, a recently discovered core subunit of the TRAnsport Particle Protein (TRAPP) complexes, which is not well studied. I performed biochemical and cell biological functional studies to characterize the cellular phenotype of the first identified
homozygous missense variants (p.Asp37Tyr and p.Ala2Gly) in TRAPPC2L linked to neurodevelopmental delays and intellectual disabilities. In this study, I show that only the p.(Ala2Gly) variant, but not the p.(Asp37Tyr) variant, disrupted the interaction betweenTRAPPC2L and TRAPPC6a, another core TRAPP protein. I also show by using size exclusion chromatography that both TRAPPC2L variants disrupted the assembly and stability of the TRAPP complexes in lysates from fibroblasts harbouring the two variants. In addition, we used two different membrane trafficking assays on fibroblasts from individuals harboring
the variants in TRAPPC2L and we found delays in endoplasmic reticulum-to-Golgi and post-Golgi trafficking. In this study, I better characterized the role of TRAPPC2L in the function and assembly of TRAPP and supported the pathogenicity of the two TRAPPC2L variants, p.(Asp37Tyr) and p.(Ala2Gly).

Divisions:Concordia University > Faculty of Arts and Science > Biology
Item Type:Thesis (Masters)
Authors:Al-Deri, Noraldin
Institution:Concordia University
Degree Name:M. Sc.
Date:2 August 2021
Thesis Supervisor(s):Sacher, Michael
ID Code:988920
Deposited On:16 Jun 2022 14:22
Last Modified:16 Jun 2022 14:22
Related URLs:


Al-Deri, N., Okur, V., Ahimaz, P., Milev, M., Valivullah, Z., Hagen, J., Sheng, Y., Chung, W., Sacher, M., & Ganapathi, M. (2020). A novel homozygous variant in TRAPPC2L results in a neurodevelopmental disorder and disrupts TRAPP complex function. Journal of Medical Genetics. https://doi.org/10.1136/jmedgenet-2020-107016

Aridor, M., & Hannan, L. A. (2000). Traffic Jam: A Compendium of Human Diseases that Affect Intracellular Transport Processes. Traffic, 1(11), 836–851. https://doi.org/10.1034/j.1600-0854.2000.011104.x

Aridor, M., & Hannan, L. A. (2002). Traffic Jams II: An Update of Diseases of Intracellular Transport. Traffic, 3(11), 781–790. https://doi.org/10.1034/j.1600-0854.2002.31103.x

Bassik, M. C., Kampmann, M., Lebbink, R. J., Wang, S., Hein, M. Y., Poser, I., Weibezahn, J., Horlbeck, M. A., Chen, S., Mann, M., Hyman, A. A., Leproust, E. M., McManus, M. T., & Weissman, J. S. (2013). A systematic mammalian genetic interaction map reveals pathways underlying ricin susceptibility. Cell, 152(4), 909–922. https://doi.org/10.1016/j.cell.2013.01.030

Béthune, J., & Wieland, F. T. (2018). Assembly of COPI and COPII Vesicular Coat Proteins on Membranes. Annual Review of Biophysics, 47, 63–83. https://doi.org/10.1146/annurev- biophys-070317-033259

Bögershausen, N., Shahrzad, N., Chong, J. X., von Kleist-Retzow, J.-C., Stanga, D., Li, Y., Bernier, F. P., Loucks, C. M., Wirth, R., Puffenberger, E. G., Hegele, R. A., Schreml, J., Lapointe, G., Keupp, K., Brett, C. L., Anderson, R., Hahn, A., Innes, A. M., Suchowersky, O., … Lamont,
R. E. (2013). Recessive TRAPPC11 Mutations Cause a Disease Spectrum of Limb Girdle Muscular Dystrophy and Myopathy with Movement Disorder and Intellectual Disability. American Journal of Human Genetics, 93(1), 181–190. https://doi.org/10.1016/j.ajhg.2013.05.028

Boland, B., Kumar, A., Lee, S., Platt, F. M., Wegiel, J., Yu, W. H., & Nixon, R. A. (2008). Autophagy Induction and Autophagosome Clearance in Neurons: Relationship to Autophagic Pathology in Alzheimer’s Disease. The Journal of Neuroscience, 28(27), 6926–6937. https://doi.org/10.1523/JNEUROSCI.0800-08.2008

Boncompain, G., Divoux, S., Gareil, N., de Forges, H., Lescure, A., Latreche, L., Mercanti, V., Jollivet, F., Raposo, G., & Perez, F. (2012). Synchronization of secretory protein traffic in populations of cells. Nature Methods, 9(5), 493–498. https://doi.org/10.1038/nmeth.1928

Bröcker, C., Engelbrecht-Vandré, S., & Ungermann, C. (2010). Multisubunit Tethering Complexes and Their Role in Membrane Fusion. Current Biology, 20(21), R943–R952. https://doi.org/10.1016/j.cub.2010.09.015

Cai, Y., Chin, H. F., Lazarova, D., Menon, S., Fu, C., Cai, H., Sclafani, A., Rodgers, D. W., De La Cruz, E. M., Ferro-Novick, S., & Reinisch, K. M. (2008). The structural basis for activation of the Rab Ypt1p by the TRAPP membrane-tethering complexes. Cell, 133(7), 1202– 1213. https://doi.org/10.1016/j.cell.2008.04.049

DeRossi, C., Vacaru, A., Rafiq, R., Cinaroglu, A., Imrie, D., Nayar, S., Baryshnikova, A., Milev, M. P., Stanga, D., Kadakia, D., Gao, N., Chu, J., Freeze, H. H., Lehrman, M. A., Sacher, M., & Sadler, K. C. (2016). Trappc11 is required for protein glycosylation in zebrafish and humans. Molecular Biology of the Cell, 27(8), 1220–1234. https://doi.org/10.1091/mbc.E15-08-0557

Duarte, D. T., Hul, S., & Sacher, M. (2011). A yeast two hybrid screen identifies SPATA4 as a TRAPP interactor. FEBS Letters, 585(17), 2676–2681. https://doi.org/10.1016/j.febslet.2011.07.040

Gedeon, A. K., Colley, A., Jamieson, R., Thompson, E. M., Rogers, J., Sillence, D., Tiller, G. E., Mulley, J. C., & Gécz, J. (1999). Identification of the gene (SEDL) causing X-linked spondyloepiphyseal dysplasia tarda. Nature Genetics, 22(4), 400–404. https://doi.org/10.1038/11976

Harripaul, R., Vasli, N., Mikhailov, A., Rafiq, M. A., Mittal, K., Windpassinger, C., Sheikh, T. I., Noor, A., Mahmood, H., Downey, S., Johnson, M., Vleuten, K., Bell, L., Ilyas, M., Khan, F. S., Khan, V., Moradi, M., Ayaz, M., Naeem, F., … Vincent, J. B. (2018). Mapping autosomal recessive intellectual disability: Combined microarray and exome sequencing identifies 26 novel candidate genes in 192 consanguineous families. Molecular Psychiatry, 23(4), 973–984. https://doi.org/10.1038/mp.2017.60

Horton, A. C., Rácz, B., Monson, E. E., Lin, A. L., Weinberg, R. J., & Ehlers, M. D. (2005). Polarized secretory trafficking directs cargo for asymmetric dendrite growth and morphogenesis. Neuron, 48(5), 757–771. https://doi.org/10.1016/j.neuron.2005.11.005

Hu, W.-H., Pendergast, J. S., Mo, X.-M., Brambilla, R., Bracchi-Ricard, V., Li, F., Walters, W. M., Blits, B., He, L., Schaal, S. M., & Bethea, J. R. (2005). NIBP, a novel NIK and IKK(beta)- binding protein that enhances NF-(kappa)B activation. The Journal of Biological Chemistry, 280(32), 29233–29241. https://doi.org/10.1074/jbc.M501670200

Jareb, M., & Banker, G. (1997). Inhibition of Axonal Growth by Brefeldin A in Hippocampal Neurons in Culture. Journal of Neuroscience, 17(23), 8955–8963. https://doi.org/10.1523/JNEUROSCI.17-23-08955.1997

Jepson, J. E. C., Praschberger, R., & Krishnakumar, S. S. (2019). Mechanisms of Neurological Dysfunction in GOSR2 Progressive Myoclonus Epilepsy, a Golgi SNAREopathy.
Neuroscience. https://doi.org/10.1016/j.neuroscience.2019.03.057

Jones, S., Newman, C., Liu, F., & Segev, N. (2000). The TRAPP Complex Is a Nucleotide Exchanger for Ypt1 and Ypt31/32. Molecular Biology of the Cell, 11(12), 4403–4411.
Karczewski, K. J., Francioli, L. C., Tiao, G., Cummings, B. B., Alföldi, J., Wang, Q., Collins, R. L., Laricchia, K. M., Ganna, A., Birnbaum, D. P., Gauthier, L. D., Brand, H., Solomonson, M., Watts, N. A., Rhodes, D., Singer-Berk, M., England, E. M., Seaby, E. G., Kosmicki, J. A., … MacArthur, D. G. (2020). The mutational constraint spectrum quantified from variation in 141,456 humans. Nature, 581(7809), 434–443. https://doi.org/10.1038/s41586-020-2308-7

Khattak, N. A., & Mir, A. (2014). Computational analysis of TRAPPC9: Candidate gene for autosomal recessive non-syndromic mental retardation. CNS & Neurological Disorders Drug Targets, 13(4), 699–711.
Kim, J. J., Lipatova, Z., & Segev, N. (2016). TRAPP Complexes in Secretion and Autophagy.

Frontiers in Cell and Developmental Biology, 4. https://doi.org/10.3389/fcell.2016.00020 Kim, M.-S., Yi, M.-J., Lee, K.-H., Wagner, J., Munger, C., Kim, Y.-G., Whiteway, M., Cygler, M., Oh, B.-H., & Sacher, M. (2005). Biochemical and crystallographic studies reveal a specific interaction between TRAPP subunits Trs33p and Bet3p. Traffic (Copenhagen, Denmark), 6(12), 1183–1195. https://doi.org/10.1111/j.1600-0854.2005.00352.x

Kim, Y.-G., Raunser, S., Munger, C., Wagner, J., Song, Y.-L., Cygler, M., Walz, T., Oh, B.-H., & Sacher, M. (2006). The architecture of the multisubunit TRAPP I complex suggests a model for vesicle tethering. Cell, 127(4), 817–830. https://doi.org/10.1016/j.cell.2006.09.029

Kümmel, D., Müller, J. J., Roske, Y., Henke, N., & Heinemann, U. (2006). Structure of the Bet3- Tpc6B core of TRAPP: Two Tpc6 paralogs form trimeric complexes with Bet3 and Mum2. Journal of Molecular Biology, 361(1), 22–32. https://doi.org/10.1016/j.jmb.2006.06.012 m, l. (1991). Guide to yeast genetics and molecular biology. Methods in Enzymology, 194, 1–863.

Marin-Valencia, I., Novarino, G., Johansen, A., Rosti, B., Issa, M. Y., Musaev, D., Bhat, G., Scott, E., Silhavy, J. L., Stanley, V., Rosti, R. O., Gleeson, J. W., Imam, F. B., Zaki, M. S., & Gleeson, J. G. (2018). A homozygous founder mutation in TRAPPC6B associates with a neurodevelopmental disorder characterised by microcephaly, epilepsy and autistic features. Journal of Medical Genetics, 55(1), 48–54. https://doi.org/10.1136/jmedgenet- 2017-104627

Milev, M. P., Graziano, C., Karall, D., Kuper, W. F. E., Al-Deri, N., Cordelli, D. M., Haack, T. B., Danhauser, K., Iuso, A., Palombo, F., Pippucci, T., Prokisch, H., Saint-Dic, D., Seri, M., Stanga, D., Cenacchi, G., van Gassen, K. L. I., Zschocke, J., Fauth, C., … van Hasselt, P. M. (2018). Bi-allelic mutations in TRAPPC2L result in a neurodevelopmental disorder and have an impact on RAB11 in fibroblasts. Journal of Medical Genetics, 55(11), 753–764. https://doi.org/10.1136/jmedgenet-2018-105441

Milev, M. P., Grout, M. E., Saint-Dic, D., Cheng, Y.-H. H., Glass, I. A., Hale, C. J., Hanna, D. S., Dorschner, M. O., Prematilake, K., Shaag, A., Elpeleg, O., Sacher, M., Doherty, D., & Edvardson, S. (2017). Mutations in TRAPPC12 Manifest in Progressive Childhood Encephalopathy and Golgi Dysfunction. American Journal of Human Genetics, 101(2), 291–299. https://doi.org/10.1016/j.ajhg.2017.07.006

Mir, A., Kaufman, L., Noor, A., Motazacker, M. M., Jamil, T., Azam, M., Kahrizi, K., Rafiq, M. A., Weksberg, R., Nasr, T., Naeem, F., Tzschach, A., Kuss, A. W., Ishak, G. E., Doherty, D., Ropers, H. H., Barkovich, A. J., Najmabadi, H., Ayub, M., & Vincent, J. B. (2009). Identification of Mutations in TRAPPC9, which Encodes the NIK- and IKK-β-Binding Protein, in Nonsyndromic Autosomal-Recessive Mental Retardation. American Journal of Human Genetics, 85(6), 909–915. https://doi.org/10.1016/j.ajhg.2009.11.009

Mizushima, N., Yamamoto, A., Matsui, M., Yoshimori, T., & Ohsumi, Y. (2004). In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Molecular Biology of the Cell, 15(3), 1101–1111. https://doi.org/10.1091/mbc.e03-09-0704

Mochida, G. H., Mahajnah, M., Hill, A. D., Basel-Vanagaite, L., Gleason, D., Hill, R. S., Bodell, A., Crosier, M., Straussberg, R., & Walsh, C. A. (2009). A Truncating Mutation of TRAPPC9 Is Associated with Autosomal-Recessive Intellectual Disability and Postnatal Microcephaly. American Journal of Human Genetics, 85(6), 897–902. https://doi.org/10.1016/j.ajhg.2009.10.027

Mohamoud, H. S., Ahmed, S., Jelani, M., Alrayes, N., Childs, K., Vadgama, N., Almramhi, M. M., Al-Aama, J. Y., Goodbourn, S., & Nasir, J. (2018). A missense mutation in TRAPPC6A leads to build-up of the protein, in patients with a neurodevelopmental syndrome and dysmorphic features. Scientific Reports, 8(1), 2053. https://doi.org/10.1038/s41598-

Montpetit, B., & Conibear, E. (2009). Identification of the novel TRAPP associated protein Tca17. Traffic (Copenhagen, Denmark), 10(6), 713–723. https://doi.org/10.1111/j.1600- 0854.2009.00895.x

Narasimhan, V., Danecek, P., Scally, A., Xue, Y., Tyler-Smith, C., & Durbin, R. (2016). BCFtools/RoH: A hidden Markov model approach for detecting autozygosity from next- generation sequencing data. Bioinformatics (Oxford, England), 32(11), 1749–1751. https://doi.org/10.1093/bioinformatics/btw044

Okur, V., LeDuc, C. A., Guzman, E., Valivullah, Z. M., Anyane-Yeboa, K., & Chung, W. K. (2019). Homozygous noncanonical splice variant in LSM1 in two siblings with multiple congenital anomalies and global developmental delay. Cold Spring Harbor Molecular Case Studies, 5(3). https://doi.org/10.1101/mcs.a004101

Pfenninger, K. H. (2009). Plasma membrane expansion: A neuron’s Herculean task. Nature Reviews. Neuroscience, 10(4), 251–261. https://doi.org/10.1038/nrn2593

Pfenninger, K. H., & Johnson, M. P. (1983). Membrane biogenesis in the sprouting neuron. I. Selective transfer of newly synthesized phospholipid into the growing neurite. The Journal of Cell Biology, 97(4), 1038–1042. https://doi.org/10.1083/jcb.97.4.1038

Poplin, R., Chang, P.-C., Alexander, D., Schwartz, S., Colthurst, T., Ku, A., Newburger, D., Dijamco, J., Nguyen, N., Afshar, P. T., Gross, S. S., Dorfman, L., McLean, C. Y., & DePristo, M. A. (2018). A universal SNP and small-indel variant caller using deep neural networks.

Nature Biotechnology, 36(10), 983–987. https://doi.org/10.1038/nbt.4235 Riedel, F., Galindo, A., Muschalik, N., & Munro, S. (2018). The two TRAPP complexes of metazoans have distinct roles and act on different Rab GTPases. The Journal of Cell Biology, 217(2), 601–617. https://doi.org/10.1083/jcb.201705068

Sacher, M., Barrowman, J., Wang, W., Horecka, J., Zhang, Y., Pypaert, M., & Ferro-Novick, S. (2001). TRAPP I implicated in the specificity of tethering in ER-to Golgi transport. Molecular Cell, 7(2), 433–442.

Sacher, M., Shahrzad, N., Kamel, H., & Milev, M. P. (2019). TRAPPopathies: An emerging set of disorders linked to variations in the genes encoding transport protein particle (TRAPP)-associated proteins. Traffic (Copenhagen, Denmark), 20(1), 5–26. https://doi.org/10.1111/tra.12615

Scrivens, P. J., Noueihed, B., Shahrzad, N., Hul, S., Brunet, S., & Sacher, M. (2011). C4orf41 and TTC-15 are mammalian TRAPP components with a role at an early stage in ER-to-Golgi trafficking. Molecular Biology of the Cell, 22(12), 2083–2093. https://doi.org/10.1091/mbc.E10-11-0873

Scrivens, P. J., Shahrzad, N., Moores, A., Morin, A., Brunet, S., & Sacher, M. (2009). TRAPPC2L is a novel, highly conserved TRAPP-interacting protein. Traffic (Copenhagen, Denmark), 10(6), 724–736. https://doi.org/10.1111/j.1600-0854.2009.00906.x

Stanga, D., Zhao, Q., Milev, M. P., Saint-Dic, D., Jimenez-Mallebrera, C., & Sacher, M. (2019).

TRAPPC11 functions in autophagy by recruiting ATG2B-WIPI4/WDR45 to preautophagosomal membranes. Traffic (Copenhagen, Denmark), 20(5), 325–345. https://doi.org/10.1111/tra.12640

Thapar, A., Cooper, M., & Rutter, M. (2017). Neurodevelopmental disorders. The Lancet Psychiatry, 4(4), 339–346. https://doi.org/10.1016/S2215-0366(16)30376-5

Thomas, L. L., & Fromme, J. C. (2016). GTPase cross talk regulates TRAPPII activation of Rab11 homologues during vesicle biogenesis. The Journal of Cell Biology, 215(4), 499–513. https://doi.org/10.1083/jcb.201608123

Thomas, L. L., Joiner, A. M. N., & Fromme, J. C. (2018). The TRAPPIII complex activates the GTPase Ypt1 (Rab1) in the secretory pathway. The Journal of Cell Biology, 217(1), 283– 298. https://doi.org/10.1083/jcb.201705214

Todde, V., Veenhuis, M., & van der Klei, I. J. (2009). Autophagy: Principles and significance in health and disease. Biochimica Et Biophysica Acta, 1792(1), 3–13. https://doi.org/10.1016/j.bbadis.2008.10.016

Wang, B., Stanford, K. R., & Kundu, M. (2020). ER-to-Golgi Trafficking and Its Implication in Neurological Diseases. Cells, 9(2), 408. https://doi.org/10.3390/cells9020408
Wang, C., Gohlke, U., Roske, Y., & Heinemann, U. (2014). Crystal structure of the yeast TRAPP- associated protein Tca17. The FEBS Journal, 281(18), 4195–4206. https://doi.org/10.1111/febs.12888

Ye, B., Zhang, Y., Song, W., Younger, S. H., Jan, L. Y., & Jan, Y. N. (2007). Growing dendrites and axons differ in their reliance on the secretory pathway. Cell, 130(4), 717–729. https://doi.org/10.1016/j.cell.2007.06.032

Zong, M., Wu, X., Chan, C. W. L., Choi, M. Y., Chan, H. C., Tanner, J. A., & Yu, S. (2011). The Adaptor Function of TRAPPC2 in Mammalian TRAPPs Explains TRAPPC2- Associated SEDT and TRAPPC9-Associated Congenital Intellectual Disability. PLoS ONE, 6(8). https://doi.org/10.1371/journal.pone.0023350
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top