Login | Register

Mountains as Climate Change Refugia in the Tropical Dry Forests of Central India: Inference from Phylogenetic Diversity and Structure


Mountains as Climate Change Refugia in the Tropical Dry Forests of Central India: Inference from Phylogenetic Diversity and Structure

Grant, Kyle R. (2022) Mountains as Climate Change Refugia in the Tropical Dry Forests of Central India: Inference from Phylogenetic Diversity and Structure. Masters thesis, Concordia University.

[thumbnail of Grant_MSc_S2022.pdf]
Text (application/pdf)
Grant_MSc_S2022.pdf - Accepted Version
Available under License Spectrum Terms of Access.


The tropical dry forests of central India are drought-prone communities that experience frequent wildfire and anthropogenic disturbances due to agricultural activity. We analysed patterns in the species diversity and phylogenetic structure of 117 tree species assemblages distributed across a ~230 m to ~940 m elevational gradient within the Central Indian state of Madhya Pradesh. We explore how these axes of diversity varied with elevation, precipitation, temperature, and climatic stress and infer possible assembly structuring mechanisms. Species richness, phylogenetic diversity (PD), and basal area were all positively correlated with elevation, which trended towards cooler temperatures, higher precipitation, and lower Chave’s E—a measure of environmental stress that compounds temperature and precipitation variability with drought intensity. High elevation assemblages tended to be phylogenetically dispersed, while the strength of dispersion diminished as plots became drier and more stressful (Chave’s E). Phylogenetic turnover was strongest across gradients in elevation, followed by stress and precipitation. Our findings indicate that precipitation deficits along with increased temperature and precipitation seasonality at low elevations may act as a selective filter on plant lineages by imposing physiological constraints on species. High elevation sites may thus provide a refuge for tree species maladapted to the harsh drought conditions present throughout low elevations in the Central Indian landscape. We suggest that high elevation habitats may become increasingly important as refugia for species if current climate warming trends continue.

Divisions:Concordia University > Faculty of Arts and Science > Biology
Item Type:Thesis (Masters)
Authors:Grant, Kyle R.
Institution:Concordia University
Degree Name:M. Sc.
Date:2 March 2022
Thesis Supervisor(s):Dayanandan, Selvadurai
ID Code:990533
Deposited By: KYLE GRANT
Deposited On:16 Jun 2022 14:40
Last Modified:27 Apr 2024 00:00


Ashcroft, M. B., Gollan, J. R., Warton, D. I., & Ramp, D. (2012). A novel approach to quantify and locate potential microrefugia using topoclimate, climate stability, and isolation from the matrix. Global Change Biology, 18(6), 1866-1879. https://doi.org/10.1111/j.1365-2486.2012.02661.x

Bernacchi, C. J., & VanLoocke, A. (2015). Terrestrial Ecosystems in a Changing Environment: A Dominant Role for Water. Annual Review of Plant Biology, 66:1, 599-622. https://doi.org/10.1146/annurev-arplant-043014-114834

Bivand, R. S., Pebesma, E., & Gomez-Rubio, V. (2013). Applied spatial data analysis with R, Second edition. Springer, NY. https://doi.org/10.1007/978-1-4614-7618-4

Borcard, D., Gellet, F., & Legendre, P. (2018). Numerical Ecology with R (second ed.), Springer International Publishing. https://doi.org/10.1007/978-3-319-71404-2

Bose, R., Ramesh, B. R., Pélissier, R., & Munoz, F. (2019). Phylogenetic diversity in the Western Ghats biodiversity hotspot reflects environmental filtering and past niche diversification of trees. Journal of Biogeography, 46(1), 145–157. https://doi.org/10.1111/jbi.13464

Bray, J. R., & Curtis, J. T. (1957). An Ordination of the Upland Forest Communities of Southern Wisconsin. Ecological Monographs, 27(4), 325–349. https://doi.org/10.2307/1942268

Cahill, J. F., Kembel, S. W., Lamb, E. G., & Keddy, P. A. (2008). Does phylogenetic relatedness influence the strength of competition among vascular plants? Perspectives in Plant Ecology, Evolution and Systematics, 10(1), 41–50. https://doi.org/10.1016/j.ppees.2007.10.001

Cavender-Bares, J., Kozak, K. H., Fine, P. V. A., & Kembel, S. W. (2009). The merging of community ecology and phylogenetic biology. Ecology Letters, 12(7), 693–715. https://doi.org/10.1111/j.1461-0248.2009.01314.x

Chandra, K. K., & Bhardwaj, A. K. (2015). Incidence of forest fire in India and its effect on terrestrial ecosystem dynamics, nutrient and microbial status of soil. International Journal of Agriculture and Forestry, 5(2), 69-78. 10.5923/j.ijaf.20150502.01

Chave, J., Réjou-Méchain, M., Búrquez, A., et al. (2014). Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology, 20(10), 3177–3190. https://doi.org/10.1111/gcb.12629

Chen, I. C., Hill, J. K., Ohlemüller, R., et al. (2011). Rapid range shifts of species associated with high levels of climate warming. Science, 333(6045), 1024-2026. https://doi.org/10.1126/science.1206432

Chu, C., Lutz, J. A., Král, K., et al. (2019). Direct and indirect effects of climate on richness drive the latitudinal diversity gradient in forest trees. Ecology Letters, 22(2), 245-255. https://doi.org/10.1111/ele.13175

D’Antonio, C. M., & Vitousek, P. M. (1992). Biological Invasions by Exotic Grasses, the Grass/Fire Cycle, and Global Change. Annual Review of Ecology and Systematics, 23, 63–87. http://www.jstor.org/stable/2097282

Davies, T. J. (2021). Ecophylogenetics redux. Ecology Letters, 24(5), 1073–1088. https://doi.org/10.1111/ele.13682

Divya, B., Ramesh, B. R., & Karanth, K. P. (2021). Contrasting patterns of phylogenetic diversity across climatic zones of Western Ghats: A biodiversity hotspot in peninsular India. Journal of Systematics and Evolution, 59(2), 240–250. https://doi.org/10.1111/jse.12663

Dobrowski, S. Z. (2011). A climatic basis for microrefugia: the influence of terrain on climate. Global Change Biology, 17, 1022-1035. https://doi.org/10.1111/j.1365-2486.2010.02263.x

Dray, S., Legendre, P., & Peres-Neto, P. R. (2006). Spatial modeling: a comprehensive framework for principal coordinate analysis of neighbor matrices (PCNM). Ecological Modelling, 196, 483–493. https://doi.org/10.1016/j.ecolmodel.2006.02.015

Elliott, J. A., Toth, B. M., Granger, R. J., & Pomeroy, J. W. (1998). Soil moisture storage in mature and replanted sub-humid boreal forest stands. Canadian Journal of Soil Science, 78(1), 17–27. https://doi.org/10.4141/S97-021

Elton, C. (1946). Competition and the structure of ecological communities. Journal of Animal Ecology, 15(1), 54–68. https://doi.org/10.2307/1625

Faith, D. P. (1992). Conservation evaluation and phylogenetic diversity. Biological Conservation, 61(1), 1–10. https://doi.org/10.1016/0006-3207(92)91201-3

Fine, P. V. A., & Kembel, S. W. (2011). Phylogenetic community structure and phylogenetic turnover across space and edaphic gradients in western Amazonian tree communities. Ecography, 34, 552–565. https://doi.org/10.1111/j.1600-0587.2010.06548.x

Freckleton, R. P., & Jetz, W. (2008). Space versus phylogeny: disentangling phylogenetic and spatial signals in comparative data. Proceedings of the Royal Society of London B: Biological Sciences, 276, 21–30. https://doi.org/10.1098/rspb.2008.0905

Givnish, T. J. (2001). On the causes of gradients in tropical tree diversity. Journal of Ecology, 87(2), 193–210. https://doi.org/10.1046/j.1365-2745.1999.00333.x

Graham, C. H., & Fine, P. V. A. (2008). Phylogenetic beta diversity: Linking ecological and evolutionary processes across space in time. Ecology Letters, 11(12), 1265–1277 (2008). https://doi.org/10.1111/j.1461-0248.2008.01256.x

Hewitt, G. M. (2004). Genetic consequences of climatic oscillations in the Quaternary. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 359(1442), 183–195. https://doi.org/10.1098/rstb.2003.1388

Hijmans, R. J. (2021). raster: Geographic Data Analysis and Modeling. R package version 3.5-2. https://CRAN.R-project.org/package=raster

Huang, M., Piao, S., Ciais, P., et al. (2019). Air temperature optima of vegetation productivity across global biomes. Nature Ecology & Evolution, 3(5), 772–779. https://doi.org/10.1038/s41559-019-0838-x

Hutchinson, G. E. (1959). Homage to Santa Rosalia, or why are there so many kinds of animals? The American Naturalist, 93(870), 145–159.

Jin, Y., & Qian, H. (2019). V.PhyloMaker: An R package that can generate very large phylogenies for vascular plants. Ecography, 42(8), 1353–1359. https://doi.org/10.1111/ecog.04434

Karna, Y. K., Penman, T. D., Aponte, C., et al. (2020). Persistent changes in the horizontal and vertical canopy structure of fire-tolerant forests after severe fire as quantified using multi-temporal airborne lidar data. Forest Ecology and Management, 472, 118255. https://doi.org/10.1016/j.foreco.2020.118255

Kembel, S. W., Cowan, P. D., Helmus, M. R., et al. (2010). Picante: R tools for integrating phylogenies and ecology. Bioinformatics, 26(11), 1463–1464. https://doi.org/10.1093/bioinformatics/btq166

Kodandapani, N., Cochrane, M. A., & Sukumar, R. (2008). A comparative analysis of spatial, temporal, and ecological characteristics of forest fires in seasonally dry tropical ecosystems in the Western Ghats, India. Forest Ecology and Management, 256(4), 607–
617. https://doi.org/10.1016/j.foreco.2008.05.006

Körner, C. (2007). The use of ‘altitude’ in ecological research. Trends in Ecology & Evolution, 22(11), 569–574. https://doi.org/10.1016/j.tree.2007.09.006

Lenoir, J., & Svenning, J. C. (2015). Climate-Related Range Shifts—A Global Multidimensional Synthesis and New Research Directions. Ecography, 38, 15-28. http://dx.doi.org/10.1111/ecog.00967

Lomolino, & Mark. V. (2001). Elevation gradients of species-density: Historical and prospective views: Elevation gradients of species-density. Global Ecology and Biogeography, 10(1), 3–13. https://doi.org/10.1046/j.1466-822x.2001.00229.x

Lozupone, C., Hamady, M., & Knight, R. (2006). UniFrac – An online tool for comparing microbial community diversity in a phylogenetic context. BMC Bioinformatics, 7(1), 371. https://doi.org/10.1186/1471-2105-7-371

Lozupone, C., & Knight, R. (2005). UniFrac: A New Phylogenetic Method for Comparing Microbial Communities. Applied and Environmental Microbiology, 71(12), 8228–8235. https://doi.org/10.1128/AEM.71.12.8228-8235.2005

MacArthur, R., & Levins, R. (1967). The limiting similarity, convergence and divergence of coexisting species. The American Naturalist, 101(921), 377–385.

Madani, N., Kimball, J. S., Jones, L. A., et al. (2017). Global Analysis of Bioclimatic Controls on Ecosystem Productivity Using Satellite Observations of Solar-Induced Chlorophyll Fluorescence. Remote Sensing, 9(6), 530. https://doi.org/10.3390/rs9060530

Mayfield, M. M., & Levine, J. M. (2010). Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecology Letters, 13(9), 1085–1093. https://doi.org/10.1111/j.1461-0248.2010.01509.x

Mazel, F., Davies, T. J., Gallien, L., et al. (2016). Influence of tree shape and evolutionary time-scale on phylogenetic diversity metrics. Ecography, 39(10), 913–920. https://doi.org/10.1111/ecog.01694

McMurdie, P. J., & Holmes, S. (2013). Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PloS ONE, 8(4), e61217. https://doi.org/10.1371/journal.pone.0061217

Miles, L., Newton, A. C., DeFries, R. S., et al. (2006). A global overview of the conservation status of tropical dry forests. Journal of Biogeography, 33(3), 491–505. https://doi.org/10.1111/j.1365-2699.2005.01424.x

Mondal N., & Sukumar, R. (2016). Fires in Seasonally Dry Tropical Forest: Testing the Varying Constraints Hypothesis across a Regional Rainfall Gradient. PloS ONE, 11(7): e0159691. https://doi.org/10.1371/journal.pone.0159691

Myers, J. A., Chase, J. M., Jiménez, I., et al. (2012). Beta-diversity in temperate and tropical forests reflects dissimilar mechanisms of community assembly. Ecology Letters, 16(2), 151-157. https://doi.org/10.1111/ele.12021

Nemani, R. R., Keeling, C. D., Hashimoto, H., et al. (2003). Climate-Driven Increases in Global Terrestrial Net Primary Production from 1982 to 1999. Science, 300(5625), 1560-1563. https://doi.org/10.1126/science.1082750

Nóbrega, C. C., Brando, P. M., Silvério, D. V., et al. (2019). Effects of experimental fires on the phylogenetic and functional diversity of woody species in a neotropical forest. Forest Ecology and Management, 450(117497). https://doi.org/10.1016/j.foreco.2019.117497

Noy-Meir, I. (1973). Desert Ecosystems and Producers. Annual Review of Ecology and Systematics, 4(2), 25-51. https://doi.org/10.1146/annurev.es.04.110173.000325

Oksanen, J., Blanchet, F. G., Friendly, M., et al. (2020). vegan: Community Ecology Package. R package version 2.5-7. https://CRAN.R-project.org/package=vegan

Oldén, A., Komonen, A., Tervonen, K., & Halme, P. (2017). Grazing and abandonment determine different tree dynamics in wood-pastures. Ambio, 46(2), 227–236. https://doi.org/10.1007/s13280-016-0821-6

Pebesma, E. J., & Bivand, R. S. (2005). Classes and methods for spatial data in R. R News 5(2), https://cran.r-project.org/doc/Rnews/.

Peres-Neto, P. R., & Legendre, P. (2010). Estimating and controlling for spatial structure in the study of ecological communities. Global Ecology and Biogeography, 19, 174-184. https://doi.org/10.1111/j.1466-8238.2009.00506.x

Pimm, S. L., Russell, G. J., Gittleman, J. L., & Brooks, T. M. (1995). The future of biodiversity. Science, 269(5222), 347–350. https://doi.org/10.1126/science.269.5222.347

Provan, J., & Bennett, K. D., (2008). Phylogeographic insights into cryptic glacial refugia. Trends in Ecology & Evolution, 23(10), 564–571. https://doi.org/10.1016/j.tree.2008.06.010

R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

Reddy, C. S., Jha, C. S., Diwakar, P. G., & Dadhwal, V. K. (2015). Nationwide classification of forest types of India using remote sensing and GIS. Environmental Monitoring and Assessment, 187(12), 777. https://doi.org/10.1007/s10661-015-4990-8

Saha, S., & Howe, H. F. (2003). Species composition and fire in a dry deciduous forest. Ecology, 84(12), 3118–3123. https://doi.org/10.1890/02-3051

Salgado-Luarte, C., Escobedo, V. M., Stotz, G. C., et al. (2019). Goat grazing reduces diversity and leads to functional, taxonomic, and phylogenetic homogenization in an arid shrubland. Land Degradation & Development, 30(2), 178–189. https://doi.org/10.1002/ldr.3208

Sathya, M., & Jayakumar, S. (2017). Post-fire regeneration status of tree species in a tropical dry deciduous forest of Southern India. Journal of Tropical Forest Science, 29(3), 305–317. https://doi.org/10.26525/jtfs2017.29.3.305317

Schmerbeck, J., & Fiener, P. (2015). Wildfires, Ecosystem Services, and Biodiversity in Tropical Dry Forest in India. Environmental Management, 56(2), 355–372. https://doi.org/10.1007/s00267-015-0502-4

Schmerbeck, J., & Seeland, K. (2007). Fire supported forest utilisation of a degraded dry forest as a means of sustainable local forest management in Tamil Nadu/South India. Land Use Policy, 24(1), 62–71. https://doi.org/10.1016/j.landusepol.2006.01.001

Schulz, K., Guschal, M., Kowarik, I., et al. (2019). Grazing reduces plant species diversity of Caatinga dry forests in northeastern Brazil. Applied Vegetation Science, 22(2), 348–359. https://doi.org/10.1111/avsc.12434

Shivaprakash, K. N., Ramesh, B. R., Umashaanker, R., & Dayanandan, S. (2018). Functional trait and community phylogenetic analyses reveal environmental filtering as the major determinant of assembly of tropical forest tree communities in the Western Ghats biodiversity hotspot in India. Forest Ecosystems, 5(1), 25. https://doi.org/10.1186/s40663-018-0144-0

Shooner, S., Davies, T. J., Saikia, P., et al. (2018). Phylogenetic diversity patterns in Himalayan forests reveal evidence for environmental filtering of distinct lineages. Ecosphere, 9(5), e02157. https://doi.org/10.1002/ecs2.2157

Simberloff, D. (1970). Taxonomic diversity of island biotas. Evolution, 24(1), 23–47. https://doi.org/10.2307/2406712

Smith, S. A., & Brown, J. W. (2018). Constructing a broadly inclusive seed plant phylogeny. American Journal of Botany, 105(3), 302–314. https://doi.org/10.1002/ajb2.1019

Sousa, W. P. (1984). The Role of Disturbance in Natural Communities. Annual Review of Ecology and Systematics, 15(1), 353–391. https://doi.org/10.1146/annurev.es.15.110184.002033

Stewart, J. R., Lister, A. M., Barnes, I., & Dalen, L. (2010). Refugia revisited: individualistic responses of species in space and time. Proceedings of the Royal Society of London B: Biological Sciences, 277, 661–671. https://doi.org/10.1098/rspb.2009.1272

Swenson, N. G., Anglada-Cordero, P., & Barone, J. A. (2011). Deterministic tropical tree community turnover: Evidence from patterns of functional beta diversity along an elevational gradient. Proceedings of the Royal Society of London B: Biological Sciences, 278(1707), 877–884. https://doi.org/10.1098/rspb.2010.1369

Venail, P. A., Narwani, A., Fritschie, K., et al. (2014). The influence of phylogenetic relatedness on species interactions among freshwater green algae in a mesocosm experiment. Journal of Ecology, 102(5), 1288–1299. https://doi.org/10.1111/1365-2745.12271

Verma, S., & Jayakumar, S. (2015). Post-fire regeneration dynamics of tree species in a tropical dry deciduous forest, Western Ghats, India. Forest Ecology and Management, 341, 75–82. https://doi.org/10.1016/j.foreco.2015.01.005

von Arx, G., Graf Pannatier, E., Thimonier, A., & Rebetez, M. (2013). Microclimate in forests with varying leaf area index and soil moisture: Potential implications for seedling establishment in a changing climate. Journal of Ecology, 101(5), 1201–1213. https://doi.org/10.1111/1365-2745.12121

Webb, C. O. (2000). Exploring the Phylogenetic Structure of Ecological Communities: An Example for Rain Forest Trees. The American Naturalist, 156(2), 145–155. https://doi.org/10.1086/303378

Webb, C. O., Ackerly, D. D., McPeek, M. A., & Donoghue, M. J. (2002). Phylogenies and Community Ecology. Annual Review of Ecology and Systematics, 33(1), 475–505. https://doi.org/10.1146/annurev.ecolsys.33.010802.150448

Weber, L., VanDerWal, J., Schmidt, S., et al. (2014). Patterns of rain forest plant endemism in subtropical Australia relate to stable mesic refugia and species dispersal limitations. Journal of Biogeography, 41, 222–238. https://doi.org/10.1111/jbi.12219

Whittaker, R. H. (1960). Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs, 30(3), 279–338. https://doi.org/10.2307/1943563

Williams, C. B. (1947). The generic relations of species in small ecological communities. Journal of Animal Ecology, 16(1), 11–18. https://doi.org/10.2307/1502

Zanne, A. E., Tank, D. C., Cornwell, W. K., et al. (2014). Three keys to the radiation of angiosperms into freezing environments. Nature, 506(7486), 89–92. https://doi.org/10.1038/nature12872

Zhang, J., Mayor, S. J., & He, F. (2014). Does disturbance regime change community assembly of angiosperm plant communities in the boreal forest? Journal of Plant Ecology, 7(2), 188–201. https://doi.org/10.1093/jpe/rtt068

Zhang, J.-L., Swenson, N. G., Chen, S.-B., et al. (2013). Phylogenetic beta diversity in tropical forests: implications for the roles of geographical and environmental distance. Journal of Systematics and Evolution, 51(1), 71–85. https://doi.org/10.1111/j.1759-6831.2012.00220.x

Zhu, J., Zhang, Y., Wang, W., et al. (2020). Species turnover drives grassland community to phylogenetic clustering over long-term grazing disturbance. Journal of Plant Ecology, 13(2), 157–164. https://doi.org/10.1093/jpe/rtz057
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top