Login | Register

Phenotypic Rescue of a Nonsense Mutation in TRAPPC11 using Translational Read-through Inducing Drugs


Phenotypic Rescue of a Nonsense Mutation in TRAPPC11 using Translational Read-through Inducing Drugs

Chase, KC (2022) Phenotypic Rescue of a Nonsense Mutation in TRAPPC11 using Translational Read-through Inducing Drugs. Masters thesis, Concordia University.

[thumbnail of Chase_MASc_S2022.pdf]
Text (application/pdf)
Chase_MASc_S2022.pdf - Accepted Version
Available under License Spectrum Terms of Access.


The TRAPP family of complexes are multisubunit tethering complexes that function in membrane trafficking. There are two TRAPP complexes that have been identified in humans: TRAPP II and TRAPP III. TrappC11 is a protein found in the TRAPP III complex and has been demonstrated to play a role in membrane trafficking, autophagy, glycosylation, and Golgi morphology. Individuals with mutations in this gene display phenotypes including developmental delay, epilepsy, cerebral atrophy, muscular dystrophy, skeletal abnormalities, and hepatomegaly. Drug induced read-through of nonsense codons could be a method of treating individuals with nonsense mutations in TRAPPC11 that result in a nonsense codon. Translational read-through inducing drugs (TRIDs) are small molecule drugs, such as Ataluren and Amlexanox, that function to suppress nonsense codons. This project aims to study the potential read-through efficacy of Ataluren and Amlexanox on fibroblasts derived from an individual with a compound heterozygous mutation where one allele has a nonsense mutation. The other TRAPPC11 patient presented in this paper is used as a comparison, as this patient does not have a nonsense mutation and therefore should not benefit from treatment with TRIDs. Results show treatment with Ataluren or Amlexanox improves various cellular functions in the patient with a nonsense mutation. It is noteworthy that Ataluren is approved for use in the UK and Amlexanox was used in the past in the USA for other human conditions. Further work aims to build upon the preliminary results observed thus far.

Divisions:Concordia University > Faculty of Arts and Science > Biology
Item Type:Thesis (Masters)
Authors:Chase, KC
Institution:Concordia University
Degree Name:M.A. Sc.
Date:21 March 2022
Thesis Supervisor(s):Sacher, Michael
ID Code:990554
Deposited By: Kaylyn Chase
Deposited On:16 Jun 2022 14:32
Last Modified:16 Jun 2022 14:32


Antonescu, C. N., McGraw, T. E., & Klip, A. (2014). Reciprocal Regulation of Endocytosis and Metabolism. Cold Spring Harbor Perspectives in Biology, 6(7), a016964–a016964. https://doi.org/10.1101/cshperspect.a016964
Atanasova, V. S., Jiang, Q., Prisco, M., Gruber, C., Piñón Hofbauer, J., Chen, M., Has, C., Bruckner-Tuderman, L., McGrath, J. A., Uitto, J., & South, A. P. (2017). Amlexanox Enhances Premature Termination Codon Read-Through in COL7A1 and Expression of Full Length Type VII Collagen: Potential Therapy for Recessive Dystrophic Epidermolysis Bullosa. Journal of Investigative Dermatology, 137(9), 1842–1849. https://doi.org/10.1016/j.jid.2017.05.011
Barlowe, C. (1994). COPII: A membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum. Cell, 77(6), 895–907. https://doi.org/10.1016/0092-8674(94)90138-4
Bassik, M. C., Kampmann, M., Lebbink, R. J., Wang, S., Hein, M. Y., Poser, I., Weibezahn, J., Horlbeck, M. A., Chen, S., Mann, M., Hyman, A. A., LeProust, E. M., McManus, M. T., & Weissman, J. S. (2013). A Systematic Mammalian Genetic Interaction Map Reveals Pathways Underlying Ricin Susceptibility. Cell, 152(4), 909–922. https://doi.org/10.1016/j.cell.2013.01.030
Behrends, C., Sowa, M. E., Gygi, S. P., & Harper, J. W. (2010). Network organization of the human autophagy system. Nature, 466(7302), 68–76. https://doi.org/10.1038/nature09204
Bi, X., Corpina, R. A., & Goldberg, J. (2002). Structure of the Sec23/24–Sar1 pre-budding complex of the COPII vesicle coat. Nature, 419(6904), 271–277. https://doi.org/10.1038/nature01040
Bidou, L., Hatin, I., Perez, N., Allamand, V., Panthier, J.-J., & Rousset, J.-P. (2004). Premature stop codons involved in muscular dystrophies show a broad spectrum of readthrough efficiencies in response to gentamicin treatment. Gene Therapy, 11(7), 619–627. https://doi.org/10.1038/sj.gt.3302211
Blomen, V. A., Májek, P., Jae, L. T., Bigenzahn, J. W., Nieuwenhuis, J., Staring, J., Sacco, R., van Diemen, F. R., Olk, N., Stukalov, A., Marceau, C., Janssen, H., Carette, J. E., Bennett, K. L., Colinge, J., Superti-Furga, G., & Brummelkamp, T. R. (2015). Gene essentiality and synthetic lethality in haploid human cells. Science, 350(6264), 1092–1096. https://doi.org/10.1126/science.aac7557
Bögershausen, N., Shahrzad, N., Chong, J. X., von Kleist-Retzow, J.-C., Stanga, D., Li, Y., Bernier, F. P., Loucks, C. M., Wirth, R., Puffenberger, E. G., Hegele, R. A., Schreml, J., Lapointe, G., Keupp, K., Brett, C. L., Anderson, R., Hahn, A., Innes, A. M., Suchowersky, O., … Lamont, R. E. (2013). Recessive TRAPPC11 Mutations Cause a Disease Spectrum of Limb Girdle Muscular Dystrophy and Myopathy with Movement Disorder and Intellectual Disability. The American Journal of Human Genetics, 93(1), 181–190. https://doi.org/10.1016/j.ajhg.2013.05.028
Boncompain, G., Divoux, S., Gareil, N., de Forges, H., Lescure, A., Latreche, L., Mercanti, V., Jollivet, F., Raposo, G., & Perez, F. (2012). Synchronization of secretory protein traffic in populations of cells. Nature Methods, 9(5), 493–498. https://doi.org/10.1038/nmeth.1928
Bonifacino, J. S., & Glick, B. S. (2004). The Mechanisms of Vesicle Budding and Fusion. Cell, 116(2), 153–166. https://doi.org/10.1016/S0092-8674(03)01079-1
Bonifacino, J. S., & Lippincott-Schwartz, J. (2003). Coat proteins: Shaping membrane transport. Nature Reviews Molecular Cell Biology, 4(5), 409–414. https://doi.org/10.1038/nrm1099
Boya, P., Reggiori, F., & Codogno, P. (2013). Emerging regulation and functions of autophagy. Nature Cell Biology, 15(7), 713–720. https://doi.org/10.1038/ncb2788
Bröcker, C., Engelbrecht-Vandré, S., & Ungermann, C. (2010). Multisubunit Tethering Complexes and Their Role in Membrane Fusion. Current Biology, 20(21), R943–R952. https://doi.org/10.1016/j.cub.2010.09.015
Brunet, S., Noueihed, B., Shahrzad, N., Saint-Dic, D., Hasaj, B., Guan, T. L., Moores, A., Barlowe, C., & Sacher, M. (2012). The SMS domain of Trs23p is responsible for the in vitro appearance of the TRAPP I complex in Saccharomyces cerevisiae. Cellular Logistics, 2(1), 28–42. https://doi.org/10.4161/cl.19414
Brunet, S., Shahrzad, N., Saint-Dic, D., Dutczak, H., & Sacher, M. (2013). A trs20 Mutation That Mimics an SEDT-Causing Mutation Blocks Selective and Non-Selective Autophagy: A Model for TRAPP III Organization: trs20D46Y Affects Autophagy. Traffic, 14(10), 1091–1104. https://doi.org/10.1111/tra.12095
Cai, Y., Chin, H. F., Lazarova, D., Menon, S., Fu, C., Cai, H., Sclafani, A., Rodgers, D. W., De La Cruz, E. M., Ferro-Novick, S., & Reinisch, K. M. (2008). The Structural Basis for Activation of the Rab Ypt1p by the TRAPP Membrane-Tethering Complexes. Cell, 133(7), 1202–1213. https://doi.org/10.1016/j.cell.2008.04.049
DeRossi, C., Vacaru, A., Rafiq, R., Cinaroglu, A., Imrie, D., Nayar, S., Baryshnikova, A., Milev, M. P., Stanga, D., Kadakia, D., Gao, N., Chu, J., Freeze, H. H., Lehrman, M. A., Sacher, M., & Sadler, K. C. (2016). Trappc11 is required for protein glycosylation in zebrafish and humans. Molecular Biology of the Cell, 27(8), 1220–1234. https://doi.org/10.1091/mbc.E15-08-0557
Eintracht, J., Forsythe, E., May-Simera, H., & Moosajee, M. (2021). Translational readthrough of ciliopathy genes BBS2 and ALMS1 restores protein, ciliogenesis and function in patient fibroblasts. EBioMedicine, 70, 103515. https://doi.org/10.1016/j.ebiom.2021.103515
Eskelinen, E.-L. (2005). Maturation of Autophagic Vacuoles in Mammalian Cells. Autophagy, 1(1), 1–10. https://doi.org/10.4161/auto.1.1.1270
Fasshauer, D., Eliason, W. K., Brünger, A. T., & Jahn, R. (1998). Identification of a Minimal Core of the Synaptic SNARE Complex Sufficient for Reversible Assembly and Disassembly. Biochemistry, 37(29), 10354–10362. https://doi.org/10.1021/bi980542h
Fee, D. B., Harmelink, M., Monrad, P., & Pyzik, E. (2017). Siblings With Mutations in TRAPPC11 Presenting With Limb-Girdle Muscular Dystrophy 2S. Journal of Clinical Neuromuscular Disease, 19(1), 27–30. https://doi.org/10.1097/CND.0000000000000173
Galindo, A., Planelles‐Herrero, V. J., Degliesposti, G., & Munro, S. (2021). Cryo‐EM structure of metazoan TRAPPIII, the multi‐subunit complex that activates the GTPase Rab1. The EMBO Journal, 40(12). https://doi.org/10.15252/embj.2020107608
Gonzalez-Hilarion, S., Beghyn, T., Jia, J., Debreuck, N., Berte, G., Mamchaoui, K., Mouly, V., Gruenert, D. C., Déprez, B., & Lejeune, F. (2012). Rescue of nonsense mutations by amlexanox in human cells. Orphanet Journal of Rare Diseases, 7(1), 58. https://doi.org/10.1186/1750-1172-7-58
Gunn, G., Dai, Y., Du, M., Belakhov, V., Kandasamy, J., Schoeb, T. R., Baasov, T., Bedwell, D. M., & Keeling, K. M. (2014). Long-term nonsense suppression therapy moderates MPS I-H disease progression. Molecular Genetics and Metabolism, 111(3), 374–381. https://doi.org/10.1016/j.ymgme.2013.12.007
Hart, T., Chandrashekhar, M., Aregger, M., Steinhart, Z., Brown, K. R., MacLeod, G., Mis, M., Zimmermann, M., Fradet-Turcotte, A., Sun, S., Mero, P., Dirks, P., Sidhu, S., Roth, F. P., Rissland, O. S., Durocher, D., Angers, S., & Moffat, J. (2015). High-Resolution CRISPR Screens Reveal Fitness Genes and Genotype-Specific Cancer Liabilities. Cell, 163(6), 1515–1526. https://doi.org/10.1016/j.cell.2015.11.015
Hosseini-Farahabadi, S., Baradaran-Heravi, A., Zimmerman, C., Choi, K., Flibotte, S., & Roberge, M. (2021). Small molecule Y-320 stimulates ribosome biogenesis, protein synthesis, and aminoglycoside-induced premature termination codon readthrough. PLOS Biology, 19(5), e3001221. https://doi.org/10.1371/journal.pbio.3001221
Howell, G. J., Holloway, Z. G., Cobbold, C., Monaco, A. P., & Ponnambalam, S. (2006). Cell Biology of Membrane Trafficking in Human Disease. In International Review of Cytology (Vol. 252, pp. 1–69). Elsevier. https://doi.org/10.1016/S0074-7696(06)52005-4
Joiner, A. M., Phillips, B. P., Yugandhar, K., Sanford, E. J., Smolka, M. B., Yu, H., Miller, E. A., & Fromme, J. C. (2021). Structural basis of TRAPPIII‐mediated Rab1 activation. The EMBO Journal, 40(12). https://doi.org/10.15252/embj.2020107607
Kabeya, Y. (2000). LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. The EMBO Journal, 19(21), 5720–5728. https://doi.org/10.1093/emboj/19.21.5720
Kim, J. J., Lipatova, Z., & Segev, N. (2016). TRAPP Complexes in Secretion and Autophagy. Frontiers in Cell and Developmental Biology, 4. https://doi.org/10.3389/fcell.2016.00020
Kishi-Itakura, C., Koyama-Honda, I., Itakura, E., & Mizushima, N. (2014). Ultrastructural analysis of autophagosome organization using mammalian autophagy-deficient cells. Journal of Cell Science, jcs.156034. https://doi.org/10.1242/jcs.156034
Klann, M., Koeppl, H., & Reuss, M. (2012). Spatial Modeling of Vesicle Transport and the Cytoskeleton: The Challenge of Hitting the Right Road. PLoS ONE, 7(1), e29645. https://doi.org/10.1371/journal.pone.0029645
Klionsky, D. J., Abdel-Aziz, A. K., Abdelfatah, S., Abdellatif, M., Abdoli, A., Abel, S., Abeliovich, H., Abildgaard, M. H., Abudu, Y. P., Acevedo-Arozena, A., Adamopoulos, I. E., Adeli, K., Adolph, T. E., Adornetto, A., Aflaki, E., Agam, G., Agarwal, A., Aggarwal, B. B., Agnello, M., … Tong, C.-K. (2021). Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition) 1. Autophagy, 17(1), 1–382. https://doi.org/10.1080/15548627.2020.1797280
Koehler, K., Milev, M. P., Prematilake, K., Reschke, F., Kutzner, S., Jühlen, R., Landgraf, D., Utine, E., Hazan, F., Diniz, G., Schuelke, M., Huebner, A., & Sacher, M. (2017). A novel TRAPPC11 mutation in two Turkish families associated with cerebral atrophy, global retardation, scoliosis, achalasia and alacrima. Journal of Medical Genetics, 54(3), 176–185. https://doi.org/10.1136/jmedgenet-2016-104108
Larson, A. A., Baker, P. R., Milev, M. P., Press, C. A., Sokol, R. J., Cox, M. O., Lekostaj, J. K., Stence, A. A., Bossler, A. D., Mueller, J. M., Prematilake, K., Tadjo, T. F., Williams, C. A., Sacher, M., & Moore, S. A. (2018). TRAPPC11 and GOSR2 mutations associate with hypoglycosylation of α-dystroglycan and muscular dystrophy. Skeletal Muscle, 8(1), 17. https://doi.org/10.1186/s13395-018-0163-0
Lejeune, F. (2017). Nonsense-mediated mRNA decay at the crossroads of many cellular pathways. BMB Reports, 50(4), 175–185. https://doi.org/10.5483/BMBRep.2017.50.4.015
Letourneur, F., Gaynor, E. C., Hennecke, S., Démollière, C., Duden, R., Emr, S. D., Riezman, H., & Cosson, P. (1994). Coatomer is essential for retrieval of dilysine-tagged proteins to the endoplasmic reticulum. Cell, 79(7), 1199–1207. https://doi.org/10.1016/0092-8674(94)90011-6
Liang, W.-C., Zhu, W., Mitsuhashi, S., Noguchi, S., Sacher, M., Ogawa, M., Shih, H.-H., Jong, Y.-J., & Nishino, I. (2015). Congenital muscular dystrophy with fatty liver and infantile-onset cataract caused by TRAPPC11 mutations: Broadening of the phenotype. Skeletal Muscle, 5(1), 29. https://doi.org/10.1186/s13395-015-0056-4
Makhoul, C., Gosavi, P., & Gleeson, P. A. (2019). Golgi Dynamics: The Morphology of the Mammalian Golgi Apparatus in Health and Disease. Frontiers in Cell and Developmental Biology, 7, 112. https://doi.org/10.3389/fcell.2019.00112
Maquat, L. E. (2004). Nonsense-mediated mRNA decay: Splicing, translation and mRNP dynamics. Nature Reviews Molecular Cell Biology, 5(2), 89–99. https://doi.org/10.1038/nrm1310
Matalonga, L., Bravo, M., Serra-Peinado, C., García-Pelegrí, E., Ugarteburu, O., Vidal, S., Llambrich, M., Quintana, E., Fuster-Jorge, P., Gonzalez-Bravo, M. N., Beltran, S., Dopazo, J., Garcia-Garcia, F., Foulquier, F., Matthijs, G., Mills, P., Ribes, A., Egea, G., Briones, P., … Girós, M. (2017). Mutations in TRAPPC11 are associated with a congenital disorder of glycosylation: HUMAN MUTATION. Human Mutation, 38(2), 148–151. https://doi.org/10.1002/humu.23145
Michorowska, S. (2021). Ataluren—Promising Therapeutic Premature Termination Codon Readthrough Frontrunner. Pharmaceuticals, 14(8), 785. https://doi.org/10.3390/ph14080785
Milev, M. P., Stanga, D., Schänzer, A., Nascimento, A., Saint-Dic, D., Ortez, C., Natera-de Benito, D., Barrios, D. G., Colomer, J., Badosa, C., Jou, C., Gallano, P., Gonzalez-Quereda, L., Töpf, A., Johnson, K., Straub, V., Hahn, A., Sacher, M., & Jimenez-Mallebrera, C. (2019). Characterization of three TRAPPC11 variants suggests a critical role for the extreme carboxy terminus of the protein. Scientific Reports, 9(1), 14036. https://doi.org/10.1038/s41598-019-50415-6
Munot, P., McCrea, N., Torelli, S., Manzur, A., Sewry, C., Chambers, D., Feng, L., Ala, P., Zaharieva, I., Ragge, N., Roper, H., Marton, T., Cox, P., Milev, M. P., Liang, W., Maruyama, S., Nishino, I., Sacher, M., Phadke, R., & Muntoni, F. (2022). TRAPPC11 ‐related muscular dystrophy with hypoglycosylation of alpha‐dystroglycan in skeletal muscle and brain. Neuropathology and Applied Neurobiology, 48(2). https://doi.org/10.1111/nan.12771
Nagel-Wolfrum, K., Möller, F., Penner, I., Baasov, T., & Wolfrum, U. (2016). Targeting Nonsense Mutations in Diseases with Translational Read-Through-Inducing Drugs (TRIDs). BioDrugs, 30(2), 49–74. https://doi.org/10.1007/s40259-016-0157-6
Ng, M. Y., Li, H., Ghelfi, M. D., Goldman, Y. E., & Cooperman, B. S. (2021). Ataluren and aminoglycosides stimulate read-through of nonsense codons by orthogonal mechanisms. Proceedings of the National Academy of Sciences, 118(2), e2020599118. https://doi.org/10.1073/pnas.2020599118
Nichols, B. J., Ungermann, C., Pelham, H. R. B., Wickner, W. T., & Haas, A. (1997). Homotypic vacuolar fusion mediated by t- and v-SNAREs. Nature, 387(6629), 199–202. https://doi.org/10.1038/387199a0
Palade, G. (1975). Intracellular Aspects of the Process of Protein Synthesis. Science, 189(4200), 347–358. https://doi.org/10.1126/science.1096303
Pearse, B. M. (1976). Clathrin: A unique protein associated with intracellular transfer of membrane by coated vesicles. Proceedings of the National Academy of Sciences, 73(4), 1255–1259. https://doi.org/10.1073/pnas.73.4.1255
Peltz, S. W., Morsy, M., Welch, E. M., & Jacobson, A. (2013). Ataluren as an Agent for Therapeutic Nonsense Suppression. Annual Review of Medicine, 64(1), 407–425. https://doi.org/10.1146/annurev-med-120611-144851
Rossi, G., Kolstad, K., Stone, S., Palluault, F., & Ferro-Novick, S. (1995). BET3 encodes a novel hydrophilic protein that acts in conjunction with yeast SNAREs. Molecular Biology of the Cell, 6(12), 1769–1780. https://doi.org/10.1091/mbc.6.12.1769
Rubinsztein, D. C., Shpilka, T., & Elazar, Z. (2012). Mechanisms of Autophagosome Biogenesis. Current Biology, 22(1), R29–R34. https://doi.org/10.1016/j.cub.2011.11.034
Sacher, M. (1998). TRAPP, a highly conserved novel complex on the cis-Golgi that mediates vesicle docking and fusion. The EMBO Journal, 17(9), 2494–2503. https://doi.org/10.1093/emboj/17.9.2494
Sacher, M., Barrowman, J., Schieltz, D., Yates, J. R., & Ferro-Novick, S. (2000). Identification and characterization of five new subunits of TRAPP. European Journal of Cell Biology, 79(2), 71–80. https://doi.org/10.1078/S0171-9335(04)70009-6
Sacher, M., Shahrzad, N., Kamel, H., & Milev, M. P. (2019). TRAPPopathies: An emerging set of disorders linked to variations in the genes encoding transport protein particle (TRAPP)‐associated proteins. Traffic, 20(1), 5–26. https://doi.org/10.1111/tra.12615
Sagiv, Y. (2000). GATE-16, a membrane transport modulator, interacts with NSF and the Golgi v-SNARE GOS-28. The EMBO Journal, 19(7), 1494–1504. https://doi.org/10.1093/emboj/19.7.1494
Samanta, A., Stingl, K., Kohl, S., Ries, J., Linnert, J., & Nagel-Wolfrum, K. (2019). Ataluren for the Treatment of Usher Syndrome 2A Caused by Nonsense Mutations. International Journal of Molecular Sciences, 20(24), 6274. https://doi.org/10.3390/ijms20246274
Schilff, M., Sargsyan, Y., Hofhuis, J., & Thoms, S. (2021). Stop Codon Context-Specific Induction of Translational Readthrough. Biomolecules, 11(7), 1006. https://doi.org/10.3390/biom11071006
Scrivens, P. J., Noueihed, B., Shahrzad, N., Hul, S., Brunet, S., & Sacher, M. (2011). C4orf41 and TTC-15 are mammalian TRAPP components with a role at an early stage in ER-to-Golgi trafficking. Molecular Biology of the Cell, 22(12), 2083–2093. https://doi.org/10.1091/mbc.e10-11-0873
Stanga, D., Zhao, Q., Milev, M. P., Saint‐Dic, D., Jimenez‐Mallebrera, C., & Sacher, M. (2019). TRAPPC11 functions in autophagy by recruiting ATG2B‐WIPI4/WDR45 to preautophagosomal membranes. Traffic, 20(5), 325–345. https://doi.org/10.1111/tra.12640
Stephens, D. J., Lin-Marq, N., Pagano, A., Pepperkok, R., & Paccaud, J. P. (2000). COPI-coated ER-to-Golgi transport complexes segregate from COPII in close proximity to ER exit sites. Journal of Cell Science, 113(12), 2177–2185. https://doi.org/10.1242/jcs.113.12.2177
Sutton, R. B., Fasshauer, D., Jahn, R., & Brunger, A. T. (1998). Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution. Nature, 395(6700), 347–353. https://doi.org/10.1038/26412
Tanida, I., Komatsu, M., Ueno, T., & Kominami, E. (2003). GATE-16 and GABARAP are authentic modifiers mediated by Apg7 and Apg3. Biochemical and Biophysical Research Communications, 300(3), 637–644. https://doi.org/10.1016/S0006-291X(02)02907-8
Thomas, L. L., Joiner, A. M. N., & Fromme, J. C. (2018). The TRAPPIII complex activates the GTPase Ypt1 (Rab1) in the secretory pathway. Journal of Cell Biology, 217(1), 283–298. https://doi.org/10.1083/jcb.201705214
Velikkakath, A. K. G., Nishimura, T., Oita, E., Ishihara, N., & Mizushima, N. (2012). Mammalian Atg2 proteins are essential for autophagosome formation and important for regulation of size and distribution of lipid droplets. Molecular Biology of the Cell, 23(5), 896–909. https://doi.org/10.1091/mbc.e11-09-0785
Vössing, C., Owczarek-Lipska, M., Nagel-Wolfrum, K., Reiff, C., Jüschke, C., & Neidhardt, J. (2020). Translational Read-Through Therapy of RPGR Nonsense Mutations. International Journal of Molecular Sciences, 21(22), 8418. https://doi.org/10.3390/ijms21228418
Wang, T., Birsoy, K., Hughes, N. W., Krupczak, K. M., Post, Y., Wei, J. J., Lander, E. S., & Sabatini, D. M. (2015). Identification and characterization of essential genes in the human genome. Science, 350(6264), 1096–1101. https://doi.org/10.1126/science.aac7041
Welch, E. M., Barton, E. R., Zhuo, J., Tomizawa, Y., Friesen, W. J., Trifillis, P., Paushkin, S., Patel, M., Trotta, C. R., Hwang, S., Wilde, R. G., Karp, G., Takasugi, J., Chen, G., Jones, S., Ren, H., Moon, Y.-C., Corson, D., Turpoff, A. A., … Sweeney, H. L. (2007). PTC124 targets genetic disorders caused by nonsense mutations. Nature, 447(7140), 87–91. https://doi.org/10.1038/nature05756
Zhao, S., Li, C. M., Luo, X. M., Siu, G. K. Y., Gan, W. J., Zhang, L., Wu, W. K. K., Chan, H. C., & Yu, S. (2017). Mammalian TRAPPIII Complex positively modulates the recruitment of Sec13/31 onto COPII vesicles. Scientific Reports, 7(1), 43207. https://doi.org/10.1038/srep43207
Zheng, J.-X., Li, Y., Ding, Y.-H., Liu, J.-J., Zhang, M.-J., Dong, M.-Q., Wang, H.-W., & Yu, L. (2017). Architecture of the ATG2B-WDR45 complex and an aromatic Y/HF motif crucial for complex formation. Autophagy, 13(11), 1870–1883. https://doi.org/10.1080/15548627.2017.1359381
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top