Login | Register

Quantum chemical simulation of solid-state phase transition under high-pressure and temperature conditions


Quantum chemical simulation of solid-state phase transition under high-pressure and temperature conditions

Hu, Hang (2022) Quantum chemical simulation of solid-state phase transition under high-pressure and temperature conditions. PhD thesis, Concordia University.

[thumbnail of Hu_Thesis_F2023.pdf]
Text (application/pdf)
Hu_Thesis_F2023.pdf - Accepted Version
Restricted to Repository staff only until 17 April 2025.
Available under License Spectrum Terms of Access.
[thumbnail of ESI V1.gif]
Image (image/gif)
ESI V1.gif - Accepted Version
Restricted to Repository staff only until 17 April 2025.
Available under License Spectrum Terms of Access.
[thumbnail of ESI V2.gif]
Image (image/gif)
ESI V2.gif - Accepted Version
Restricted to Repository staff only until 17 April 2025.
Available under License Spectrum Terms of Access.
[thumbnail of ESI V3.gif]
Image (image/gif)
ESI V3.gif - Accepted Version
Restricted to Repository staff only until 17 April 2025.
Available under License Spectrum Terms of Access.
[thumbnail of ESI V4.gif]
Image (image/gif)
ESI V4.gif - Accepted Version
Restricted to Repository staff only until 17 April 2025.
Available under License Spectrum Terms of Access.
[thumbnail of ESI V5.gif]
Image (image/gif)
ESI V5.gif - Accepted Version
Restricted to Repository staff only until 17 April 2025.
Available under License Spectrum Terms of Access.


The combination of high-pressure and high-temperature (HPHT) enables the observation of phase-transition behaviour in materials otherwise inaccessible under ambient conditions. Individually, increasing pressure and temperature often have opposite effects on materials properties, and the exact nature and details of the thermal-mechanical coupling necessary for chemical transformations to take place remain poorly understood and difficult to decipher experimentally. Bridging this knowledge gap requires a new quantum simulation approach based on the framework of existing Kohn-Sham density-functional theory (DFT) calculations to better understand at the atomistic level how and when mechanical work (pressure) couples with thermal heat (temperature) to initiate a chemical reaction. The accuracy and feasibility of using DFT to study material properties were validated by studying different types of silicon-containing materials. The validation study focused on the physio-chemical properties of different nitride materials and highlights the functional significance of silicon’s 3d states in solid-state materials. Additionally, novel methods to improve DFT calculation efficiency were also explored. By adopting a solid-harmonic Gaussian type orbital to replace conventional cartesian Gaussian type orbital, it is theoretically possible to achieve 4 orders of magnitude of calculation speed-up without sacrificing accuracy. The solid-state phase transition of graphitic-boron nitride (BN) to cubic-BN was adopted as a model to study the reaction mechanism under HPHT conditions. From our simulation of BN reaction profiles, we found that the gradient of the lattice vibration potential for the BN phonon modes increases with pressure. This enables the BN system to absorb a higher degree of thermal energy, but it indirectly confers a specific phonon mode, with atomic displacements normal to the graphitic-BN layer, significant anharmonic behaviour. The atomic vibration pattern of this specific phonon mode allows efficient transfer of thermal energy to chemical bonds and drives bond breaking and rearrangement. The eventual initiation of the phase transition involves the vibrational reaction motion that removes electronic degeneracies, altering the electronic band energy level. The simulations show that HPHT-induced phase transition reactions exhibit similar behaviour to the mode selective process in synthetic chemistry, where selectively activating a particular bond vibration may dictate the outcome of reactions for organic molecules.

Divisions:Concordia University > Faculty of Arts and Science > Chemistry and Biochemistry
Item Type:Thesis (PhD)
Authors:Hu, Hang
Institution:Concordia University
Degree Name:Ph. D.
Date:29 July 2022
Thesis Supervisor(s):Peslherbe, Gilles H.
Keywords:Density-function theory, high-pressure high-temperature, condensed phase material, electronic structure, solid harmonic gaussian type orbital
ID Code:992223
Deposited By: Hang Hu
Deposited On:21 Jun 2023 14:26
Last Modified:21 Jun 2023 14:26


(1) Asay, J. R.; Shahinpoor, M. High-Pressure Shock Compression of Solids; Springer Science & Business Media, 2012.
(2) D’Addario, D. Organic Solid State Reactions; Springer Science & Business Media, 2005
(3) Zhu, L.; Wang, Z.; Wang, Y.; Zou, G.; Mao, H.; Ma, Y. Spiral Chain O4 Form of Dense Oxygen. PNAS. 2012, 109 (3), 751–753. https://doi.org/10.1073/pnas.1119375109.
(4) Uemura, E.; Akahama, Y.; Kawamura, H.; Bihan, T. L.; Shobu, T.; Noda, Y.; Shimomura, O. Structural Studies of β-O2 under Pressure. J. Phys. Condens. Matter. 2002, 14 (44), 10423–10428. https://doi.org/10.1088/0953-8984/14/44/305.
(5) Degtyareva, O. Crystal Structure of Simple Metals at High Pressures. High Press. Res. 2010, 30 (3), 343–371. https://doi.org/10.1080/08957959.2010.508877.
(6) Chen, Y.-M.; Geng, H.-Y.; Yan, X.-Z.; Wang, Z.-W.; Chen, X.-R.; Wu, Q. Predicted Novel Insulating Electride Compound between Alkali Metals Lithium and Sodium under High Pressure. Chin. Phys. B 2017, 26 (5), 056102. https://doi.org/10.1088/1674-1056/26/5/056102.
(7) Glowacki, D. R.; Lightfoot, R.; Harvey, J. N. Non-Equilibrium Phenomena and Molecular Reaction Dynamics: Mode Space, Energy Space and Conformer Space. Mol. Phys. 2013, 111 (5), 631–640. https://doi.org/10.1080/00268976.2013.780100.
(8) Burke, K.; Wagner, L. O. DFT in a Nutshell. Int. J. Quantum Chem. 2013, 113 (2), 96–101. https://doi.org/10.1002/qua.24259.
(9) The Nobel Prize in Chemistry 1998. https://www.nobelprize.org/prizes/chemistry/1998/summary/ (accessed 2022-07-01).
(10) Schrödinger, E. An Undulatory Theory of the Mechanics of Atoms and Molecules. Phys. Rev. 1926, 28 (6), 1049–1070. https://doi.org/10.1103/PhysRev.28.1049.
(11) Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136 (3B), B864–B871. https://doi.org/10.1103/PhysRev.136.B864.
(12) Kohn, W.; Sham, L. J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140 (4A), A1133–A1138. https://doi.org/10.1103/PhysRev.140.A1133.
(13) Gao, S.-P.; Cai, G.; Xu, Y. Band Structures for Ge3N4 Polymorphs Studied by DFT-LDA and GWA. Comput. Mater. Sci. 2013, 67, 292–295. https://doi.org/10.1016/j.commatsci.2012.09.008.
(14) Borlido, P.; Schmidt, J.; Huran, A. W.; Tran, F.; Marques, M. A. L.; Botti, S. Exchange-Correlation Functionals for Band Gaps of Solids: Benchmark, Reparametrization and Machine Learning. Npj Comput. Mater. 2020, 6 (1), 96. https://doi.org/10.1038/s41524-020-00360-0.
(15) Perdew, J. P.; Yang, W.; Burke, K.; Yang, Z.; Gross, E. K. U.; Scheffler, M.; Scuseria, G. E.; Henderson, T. M.; Zhang, I. Y.; Ruzsinszky, A.; Peng, H.; Sun, J.; Trushin, E.; Görling, A. Understanding Band Gaps of Solids in Generalized Kohn–Sham Theory. PNAS. 2017, 114 (11), 2801. https://doi.org/10.1073/pnas.1621352114.
(16) Sham, L. J.; Schlüter, M. Density-Functional Theory of the Energy Gap. Phys. Rev. Lett. 1983, 51 (20), 1888–1891. https://doi.org/10.1103/PhysRevLett.51.1888.
(17) Perdew, J. P.; Levy, M. Physical Content of the Exact Kohn-Sham Orbital Energies: Band Gaps and Derivative Discontinuities. Phys. Rev. Lett. 1983, 51 (20), 1884–1887. https://doi.org/10.1103/PhysRevLett.51.1884.
(18) Mosquera, M. A.; Wasserman, A. Derivative Discontinuities in Density Functional Theory. Mol. Phys. 2014, 112 (23), 2997–3013. https://doi.org/10.1080/00268976.2014.968650.
(19) Ferreira, L. G.; Marques, M.; Teles, L. K. Slater Half-Occupation Technique Revisited: The LDA-1/2 and GGA-1/2 Approaches for Atomic Ionization Energies and Band Gaps in Semiconductors. AIP Adv. 2011, 1 (3), 032119. https://doi.org/10.1063/1.3624562.
(20) Hedin, L. New Method for Calculating the One-Particle Green’s Function with Application to the Electron-Gas Problem. Phys. Rev. 1965, 139 (3A), A796–A823. https://doi.org/10.1103/PhysRev.139.A796.
(21) Liu, A. Y.; Cohen, M. L. Prediction of New Low Compressibility Solids. Science. 1989, 245 (4920), 841–842. https://doi.org/10.1126/science.245.4920.841.
(22) Somayazulu, M.; Ahart, M.; Mishra, A. K.; Geballe, Z. M.; Baldini, M.; Meng, Y.; Struzhkin, V. V.; Hemley, R. J. Evidence for Superconductivity above 260 K in Lanthanum Superhydride at Megabar Pressures. Phys. Rev. Lett. 2019, 122 (2), 027001. https://doi.org/10.1103/PhysRevLett.122.027001.
(23) Pickard, C. J.; Needs, R. J. High-Pressure Phases of Silane. Phys. Rev. Lett. 2006, 97 (4), 045504. https://doi.org/10.1103/PhysRevLett.97.045504.
(24) Bednorz, J. G.; Müller, K. A. Possible High Tc Superconductivity in the Ba−La−Cu−O System. Z. Für Phys. B Condens. Matter 1986, 64 (2), 189–193. https://doi.org/10.1007/BF01303701.
(25) The Nobel Prize in Physics 1987. https://www.nobelprize.org/prizes/physics/1987/summary/ (accessed 2022-08-01).
(26) Liang, T.; Zhang, Z.; Feng, X.; Jia, H.; Pickard, C. J.; Redfern, S. A.; Duan, D. Ternary Hypervalent Silicon Hydrides via Lithium at High Pressure. Phys. Rev. Mater. 2020, 4 (11), 113607. https://doi.org/10.1103/PhysRevMaterials.4.113607.
(27) Pak, C.; Rienstra-Kiracofe, J. C.; Schaefer, H. F. Electron Affinities of Silicon Hydrides: SiHn(n=0− 4) and Si2Hn(n=0− 6). J. Phys. Chem. A. 2000, 104 (47), 11232–11242. https://doi.org/10.1021/jp003029y.
(28) Kołodziejczak-Radzimska, A.; Jesionowski, T. Zinc Oxide—From Synthesis to Application: A Review. Materials. 2014, 7 (4), 2833–2881. https://doi.org/10.3390/ma7042833.
(29) Wang, R. M.; Xing, Y. J.; Xu, J.; Yu, D. P. Fabrication and Microstructure Analysis on Zinc Oxide Nanotubes. New J. Phys. 2003, 5, 115–115. https://doi.org/10.1088/1367-2630/5/1/115.
(30) Dubrovinskaia, N.; Solozhenko, V. L.; Miyajima, N.; Dmitriev, V.; Kurakevych, O. O.; Dubrovinsky, L. Superhard Nanocomposite of Dense Polymorphs of Boron Nitride: Noncarbon Material Has Reached Diamond Hardness. Appl. Phys. Lett. 2007, 90 (10), 101912. https://doi.org/10.1063/1.2711277.
(31) Takahashi, N.; Terada, K.; Nakamura, T. Atmospheric Pressure Chemical Vapor Deposition of Tin Nitride Thin Films Using a Halide Source. J. Mater. Chem. 2000, 10 (12), 2835–2837. https://doi.org/10.1039/B005032F.
(32) He, H.; Sekine, T.; Kobayashi, T.; Kimoto, K. Phase Transformation of Germanium Nitride (Ge3N4) under Shock Wave Compression. J. Appl. Phys. 2001, 90 (9), 4403–4406. https://doi.org/10.1063/1.1407851.
(33) Shemkunas, M. P.; Wolf, G. H.; Leinenweber, K.; Petuskey, W. T. Rapid Synthesis of Crystalline Spinel Tin Nitride by a Solid-State Metathesis Reaction. J. Am. Ceram. Soc. 2002, 85 (1), 101–104. https://doi.org/10.1111/j.1151-2916.2002.tb00047.x.
(34) Scotti, N.; Kockelmann, W.; Senker, J.; Traßel, St.; Jacobs, H. Sn3N4, ein Zinn(IV)-nitrid – Synthese und erste Strukturbestimmung einer binären Zinn–Stickstoff-Verbindung. Z. Für Anorg. Allg. Chem. 1999, 625 (9), 1435–1439. https://doi.org/10.1002/(SICI)1521-3749(199909)625:9<1435::AID-ZAAC1435>3.0.CO;2-%23
(35) Zerr, A.; Miehe, G.; Serghiou, G.; Schwarz, M.; Kroke, E.; Riedel, R.; Fueß, H.; Kroll, P.; Boehler, R. Synthesis of Cubic Silicon Nitride. Nature. 1999, 400 (6742), 340–342. https://doi.org/10.1038/22493.
(36) Zerr, A.; Miehe, G.; Riedel, R. Synthesis of Cubic Zirconium and Hafnium Nitride Having Th3P4 Structure. Nat. Mater. 2003, 2 (3), 185–189. https://doi.org/10.1038/nmat836.
(37) Serghiou, G.; Miehe, G.; Tschauner, O.; Zerr, A.; Boehler, R. Synthesis of a Cubic Ge3N4 Phase at High Pressures and Temperatures. J. Chem. Phys. 1999, 111 (10), 4659–4662. https://doi.org/10.1063/1.479227.
(38) Lerch, M.; Füglein, E.; Wrba, J. Synthesis, Crystal Structure, and High Temperature Behavior of Zr3N4. Z. Für Anorg. Allg. Chem. 1996, 622 (2), 367–372. https://doi.org/10.1002/zaac.19966220227.
(39) Lowther, J. E. High-Pressure Phases and Structural Bonding of Ge3N4. Phys. Rev. B. 2000, 62 (1), 5–8. https://doi.org/10.1103/PhysRevB.62.5.
(40) Bailey, E.; Ray, N. M. T.; Hector, A. L.; Crozier, P.; Petuskey, W. T.; McMillan, P. F. Mechanical Properties of Titanium Nitride Nanocomposites Produced by Chemical Precursor Synthesis Followed by High-P,T Treatment. Mater. Basel Switz. 2011, 4 (10), 1747–1762. https://doi.org/10.3390/ma4101747.
(41) Sekine, T.; He, H.; Kobayashi, T.; Zhang, M.; Xu, F. Shock-Induced Transformation of β-Si3N4 to a High-Pressure Cubic-Spinel Phase. Appl. Phys. Lett. 2000, 76 (25), 3706–3708. https://doi.org/10.1063/1.126756.
(42) Boyko, T. D.; Hunt, A.; Zerr, A.; Moewes, A. Electronic Structure of Spinel-Type Nitride Compounds Si3N4, Ge3N4, and Sn3N4 with Tunable Band Gaps: Application to Light Emitting Diodes. Phys. Rev. Lett. 2013, 111 (9), 097402. https://doi.org/10.1103/PhysRevLett.111.097402.
(43) Xu, M.; Wang, S.; Yin, G.; Li, J.; Zheng, Y.; Chen, L.; Jia, Y. Optical Properties of Cubic Ti3N4, Zr3N4, and Hf3N4. Appl. Phys. Lett. 2006, 89 (15), 151908. https://doi.org/10.1063/1.2360937.
(44) Silicon Nitride Rocket Thrusters Test Fired Successfully. https://ntrs.nasa.gov/api/citations/20010060375/downloads/20010060375.pdf (accessed 2021-02-01).
(45) Milošev, I.; Strehblow, H.-H.; Navinšek, B. Comparison of TiN, ZrN and CrN Hard Nitride Coatings: Electrochemical and Thermal Oxidation. Thin Solid Films. 1997, 303 (1), 246–254. https://doi.org/10.1016/S0040-6090(97)00069-2.
(46) Solovan, M. N.; Brus, V. V.; Maistruk, E. V.; Maryanchuk, P. D. Electrical and Optical Properties of TiN Thin Films. Inorg. Mater. 2014, 50 (1), 40–45. https://doi.org/10.1134/S0020168514010178.
(47) Bhadram, V. S.; Liu, H.; Xu, E.; Li, T.; Prakapenka, V. B.; Hrubiak, R.; Lany, S.; Strobel, T. A. Semiconducting Cubic Titanium Nitride in the Th3P4 Structure. Phys. Rev. Mater. 2018, 2 (1), 011602. https://doi.org/10.1103/PhysRevMaterials.2.011602.
(48) Webb, D. R.; Sipes, I. G.; Carter, D. E. In Vitro Solubility and in Vivo Toxicity of Gallium Arsenide. Toxicol. Appl. Pharmacol. 1984, 76 (1), 96–104. https://doi.org/10.1016/0041-008x(84)90032-2.
(49) Yang, M.; Wang, S. J.; Feng, Y. P.; Peng, G. W.; Sun, Y. Y. Electronic Structure of Germanium Nitride Considered for Gate Dielectrics. J. Appl. Phys. 2007, 102 (1), 013507. https://doi.org/10.1063/1.2747214.
(50) Kroll, P. Hafnium Nitride with Thorium Phosphide Structure: Physical Properties and an Assessment of the Hf-N, Zr-N, and Ti-N Phase Diagrams at High Pressures and Temperatures. Phys. Rev. Lett. 2003, 90 (12), 125501. https://doi.org/10.1103/PhysRevLett.90.125501.
(51) Ching, W.-Y.; Mo, S.-D.; Ouyang, L.; Rulis, P.; Tanaka, I.; Yoshiya, M. Theoretical Prediction of the Structure and Properties of Cubic Spinel Nitrides. J. Am. Ceram. Soc. 2002, 85 (1), 75–80. https://doi.org/10.1111/j.1151-2916.2002.tb00042.x.
(52) Toraya, H. Crystal Structure Refinement of α-Si3N4 Using Synchrotron Radiation Powder Diffraction Data: Unbiased Refinement Strategy. J. Appl. Crystallogr. 2000, 33 (1), 95–102. https://doi.org/10.1107/S0021889899013060.
(53) Ching, W. Y.; Rulis, P. Ab Initio Calculation of the Electronic Structure and Spectroscopic Properties of Spinel Γ− Sn3N4. Phys. Rev. B. 2006, 73 (4), 045202. https://doi.org/10.1103/PhysRevB.73.045202.
(54) Baur, W. H.; Lerch, M. On Deciding between Space Groups Pnam and Pna21 for the Crystal Structure of Zr3N4. Z. Für Anorg. Allg. Chem. 1996, 622 (10), 1729–1730. https://doi.org/10.1002/zaac.19966221017.
(55) Ferreira, L. G.; Marques, M.; Teles, L. K. Approximation to Density Functional Theory for the Calculation of Band Gaps of Semiconductors. Phys. Rev. B. 2008, 78 (12), 125116. https://doi.org/10.1103/PhysRevB.78.125116.
(56) Viñes, F.; Lamiel-García, O.; Chul Ko, K.; Yong Lee, J.; Illas, F. Systematic Study of the Effect of HSE Functional Internal Parameters on the Electronic Structure and Band Gap of a Representative Set of Metal Oxides. J. Comput. Chem. 2017, 38 (11), 781–789. https://doi.org/10.1002/jcc.24744.
(57) Im, J.; Stoumpos, C. C.; Jin, H.; Freeman, A. J.; Kanatzidis, M. G. Antagonism between Spin–Orbit Coupling and Steric Effects Causes Anomalous Band Gap Evolution in the Perovskite Photovoltaic Materials CH3NH3Sn1–xPbxI3. J. Phys. Chem. Lett. 2015, 6 (17), 3503–3509. https://doi.org/10.1021/acs.jpclett.5b01738.
(58) Museur, L.; Zerr, A.; Kanaev, A. Photoluminescence and Electronic Transitions in Cubic Silicon Nitride. Sci. Rep. 2016, 6 (1), 18523. https://doi.org/10.1038/srep18523.
(59) Chu, I.-H.; Kozhevnikov, A.; Schulthess, T. C.; Cheng, H.-P. All-Electron GW Quasiparticle Band Structures of Group 14 Nitride Compounds. J. Chem. Phys. 2014, 141 (4), 044709. https://doi.org/10.1063/1.4890325.
(60) Ching, W. Y.; Xu, Y.-N.; Ouyang, L. Electronic and Dielectric Properties of Insulating Zr3N4. Phys. Rev. B. 2002, 66 (23), 235106. https://doi.org/10.1103/PhysRevB.66.235106.
(61) Strinati, G.; Mattausch, H. J.; Hanke, W. Dynamical Correlation Effects on the Quasiparticle Bloch States of a Covalent Crystal. Phys. Rev. Lett. 1980, 45 (4), 290–294. https://doi.org/10.1103/PhysRevLett.45.290.
(62) Pickett, W. E.; Wang, C. S. Local-Density Approximation for Dynamical Correlation Corrections to Single-Particle Excitations in Insulators. Phys. Rev. B. 1984, 30 (8), 4719–4733. https://doi.org/10.1103/PhysRevB.30.4719.
(63) Blum, V.; Gehrke, R.; Hanke, F.; Havu, P.; Havu, V.; Ren, X.; Reuter, K.; Scheffler, M. ab initio Molecular Simulations with Numeric Atom-Centered Orbitals. Comput. Phys. Commun. 2009, 180 (11), 2175–2196. https://doi.org/10.1016/j.cpc.2009.06.022.
(64) Tang, W.; Sanville, E.; Henkelman, G. A Grid-Based Bader Analysis Algorithm without Lattice Bias. J. Phys. Condens. Matter. 2009, 21 (8), 084204. https://doi.org/10.1088/0953-8984/21/8/084204.
(65) Bader, R. F. W.; Nguyen-Dang, T. T. Quantum Theory of Atoms in Molecules–Dalton Revisited. In Advances in Quantum Chemistry; Löwdin, P.-O., Ed.; Academic Press, 1981; Vol. 14, pp 63–124. https://doi.org/10.1016/S0065-3276(08)60326-3.
(66) Grimvall, G. Thermophysical Properties of Materials; Elsevier, 1999. https://doi.org/10.1016/B978-044482794-4/50032-2.
(67) Murnaghan, F. D. The Compressibility of Media under Extreme Pressures. PNAS. 1944, 30 (9), 244–247. https://doi.org/10.1073/pnas.30.9.244.
(68) Bruneval, F.; Gonze, X. Accurate G W Self-Energies in a Plane-Wave Basis Using Only a Few Empty States: Towards Large Systems. Phys. Rev. B. 2008, 78 (8), 085125. https://doi.org/10.1103/PhysRevB.78.085125.
(69) Bruneval, F.; Vast, N.; Reining, L. Effect of Self-Consistency on Quasiparticles in Solids. Phys. Rev. B. 2006, 74 (4), 045102. https://doi.org/10.1103/PhysRevB.74.045102.
(70) Isseroff, L. Y.; Carter, E. A. Importance of Reference Hamiltonians Containing Exact Exchange for Accurate One-Shot GW Calculations of Cu2O. Phys. Rev. B. 2012, 85 (23), 235142. https://doi.org/10.1103/PhysRevB.85.235142.
(71) Rodrigues Pela, R.; Gulans, A.; Draxl, C. The LDA-1/2 Method Implemented in the Exciting Code. Comput. Phys. Commun. 2017, 220, 263–268. https://doi.org/10.1016/j.cpc.2017.07.015.
(72) Tao, S. X.; Cao, X.; Bobbert, P. A. Accurate and Efficient Band Gap Predictions of Metal Halide Perovskites Using the DFT-1/2 Method: GW Accuracy with DFT Expense. Sci. Rep. 2017, 7 (1), 14386. https://doi.org/10.1038/s41598-017-14435-4.
(73) Slater, J. C.; Johnson, K. H. Self-Consistent-Field Xα Cluster Method for Polyatomic Molecules and Solids. Phys. Rev. B. 1972, 5 (3), 844–853. https://doi.org/10.1103/PhysRevB.5.844.
(74) Janak, J. F. Proof That ∂E/∂ni=ε in Density-Functional Theory. Phys. Rev. B. 1978, 18 (12), 7165–7168. https://doi.org/10.1103/PhysRevB.18.7165.
(75) Perdew, J. P.; Zunger, A. Self-Interaction Correction to Density-Functional Approximations for Many-Electron Systems. Phys. Rev. B. 1981, 23 (10), 5048–5079. https://doi.org/10.1103/PhysRevB.23.5048.
(76) Xue, K.-H.; Yuan, J.-H.; Fonseca, L. R. C.; Miao, X.-S. Improved LDA-1/2 Method for Band Structure Calculations in Covalent Semiconductors. Comput. Mater. Sci. 2018, 153, 493–505. https://doi.org/10.1016/j.commatsci.2018.06.036.
(77) Gulans, A.; Kontur, S.; Meisenbichler, C.; Nabok, D.; Pavone, P.; Rigamonti, S.; Sagmeister, S.; Werner, U.; Draxl, C. Exciting: A Full-Potential All-Electron Package Implementing Density-Functional Theory and Many-Body Perturbation Theory. J. Phys. Condens. Matter. 2014, 26 (36), 363202. https://doi.org/10.1088/0953-8984/26/36/363202.
(78) Zerr, A.; Kempf, M.; Schwarz, M.; Kroke, E.; Göken, M.; Riedel, R. Elastic Moduli and Hardness of Cubic Silicon Nitride. J. Am. Ceram. Soc. 2002, 85 (1), 86–90. https://doi.org/10.1111/j.1151-2916.2002.tb00044.x.
(79) Leinenweber, K.; O’keeffe, M.; Somayazulu, M.; Hubert, H.; McMillan, P. F.; Wolf, G. H. Synthesis and Structure Refinement of the Spinel, Γ‐Ge3N4. Chem.-Weinh.-Eur. J.- 1999, 5, 3076–3078. https://doi.org/10.1002/(SICI)1521-3765(19991001)5:10<3076::AID-CHEM3076>3.0.CO;2-D
(80) Wang, Z.; Zhao, Y.; Schiferl, D.; Qian, J.; Downs, R. T.; Mao, H.-K.; Sekine, T. Threshold Pressure for Disappearance of Size-Induced Effect in Spinel-Structure Ge3N4 Nanocrystals. J. Phys. Chem. B. 2003, 107 (51), 14151–14153. https://doi.org/10.1021/jp036436t.
(81) Shemkunas, M. P.; Petuskey, W. T.; Chizmeshya, A. V. G.; Leinenweber, K.; Wolf, G. H. Hardness, Elasticity, and Fracture Toughness of Polycrystalline Spinel Germanium Nitride and Tin Nitride. J. Mater. Res. 2004, 19 (5), 1392–1399. https://doi.org/10.1557/JMR.2004.0186.
(82) Andreas Zerr, I. C. Elasticity of Tin Nitride Having Spinel Structure, Sn3N4, and Hardness of Hypothetical C3N4. Phys. Rev. Lett. 2020.
(83) Jayaraman, A.; Batlogg, B.; Maines, R. G.; Bach, H. Effective Ionic Charge and Bulk Modulus Scaling in Rocksalt-Structured Rare-Earth Compounds. Phys. Rev. B. 1982, 26 (6), 3347. https://doi.org/10.1103/PhysRevB.26.3347.
(84) Verma, A. S.; Kumar, A. Bulk Modulus of Cubic Perovskites. J. Alloys Compd. 2012, 541, 210–214. https://doi.org/10.1016/j.jallcom.2012.07.027.
(85) Jiang, J. Z.; Lindelov, H.; Gerward, L.; Ståhl, K.; Recio, J. M.; Mori-Sanchez, P.; Carlson, S.; Mezouar, M.; Dooryhee, E.; Fitch, A. Compressibility and Thermal Expansion of Cubic Silicon Nitride. Phys. Rev. B. 2002, 65 (16), 161202. https://doi.org/10.1103/PhysRevB.65.161202.
(86) Bikowski, A.; Siol, S.; Gu, J.; Holder, A.; Mangum, J. S.; Gorman, B.; Tumas, W.; Lany, S.; Zakutayev, A. Design of Metastable Tin Titanium Nitride Semiconductor Alloys. Chem. Mater. 2017, 29 (15), 6511–6517. https://doi.org/10.1021/acs.chemmater.7b02122.
(87) Arca, E.; Lany, S.; Perkins, J. D.; Bartel, C.; Mangum, J.; Sun, W.; Holder, A.; Ceder, G.; Gorman, B.; Teeter, G.; Tumas, W.; Zakutayev, A. Redox-Mediated Stabilization in Zinc Molybdenum Nitrides. J. Am. Chem. Soc. 2018, 140 (12), 4293–4301. https://doi.org/10.1021/jacs.7b12861.
(88) Wagler, J.; Böhme, U.; Kroke, E. Higher-Coordinated Molecular Silicon Compounds. In Functional Molecular Silicon Compounds I; Springer, 2013; pp 29–105. https://doi.org/10.1007/430_2013_118.
(89) Gellner, M.; Steinigeweg, D.; Ichilmann, S.; Salehi, M.; Schütz, M.; Kömpe, K.; Haase, M.; Schlücker, S. 3D Self‐Assembled Plasmonic Superstructures of Gold Nanospheres: Synthesis and Characterization at the Single‐Particle Level. Small. 2011, 7 (24), 3445–3451. https://doi.org/10.1002/smll.201102009.
(90) Kocher, N.; Henn, J.; Gostevskii, B.; Kost, D.; Kalikhman, I.; Engels, B.; Stalke, D. Si− E (E= N, O, F) Bonding in a Hexacoordinated Silicon Complex: New Facts from Experimental and Theoretical Charge Density Studies. J. Am. Chem. Soc. 2004, 126 (17), 5563–5568. https://doi.org/10.1021/ja038459r.
(91) Cruickshank, D. W. J. A Reassessment of Dπ—Pπ Bonding in the Tetrahedral Oxyanions of Second-Row Atoms. J. Mol. Struct. 1985, 130 (1–2), 177–191. https://doi.org/10.1016/0022-2860(85)85032-8.
(92) Garvie, L. A. J.; Rez, P.; Alvarez, J. R.; Buseck, P. R.; Craven, A. J.; Brydson, R. Bonding in Alpha-Quartz (SiO2): A View of the Unoccupied States. Am. Mineral. 2000, 85 (5–6), 732–738. https://doi.org/10.2138/am-2000-5-611.
(93) Wang, Y.; Chen, M.; Xie, Y.; Wei, P.; Schaefer, H. F.; Schleyer, P. von R.; Robinson, G. H. Stabilization of Elusive Silicon Oxides. Nat. Chem. 2015, 7 (6), 509–513. https://doi.org/10.1038/nchem.2234.
(94) Gibbs, G. V.; Downs, J. W.; Boisen Jr, M. B. The Elusive SiO Bond in Silica; De Gruyter, 1994; Vol. 29. pp 331-368 https://doi.org/10.1515/9781501509698
(95) Pierrefixe, S. C.; Fonseca Guerra, C.; Bickelhaupt, F. M. Hypervalent Silicon versus Carbon: Ball‐in‐a‐Box Model. Chem. Eur. J. 2008, 14 (3), 819–828. https://doi.org/10.1002/chem.200701252.
(96) Chelikowsky, J. R.; Schlüter, M. Electron States in α-Quartz: A Self-Consistent Pseudopotential Calculation. Phys. Rev. B. 1977, 15 (8), 4020. https://doi.org/10.1103/PhysRevB.15.4020.
(97) Calabrese, E.; Fowler, W. B. Electronic Energy-Band Structure of \ensuremath{\alpha} Quartz. Phys. Rev. B. 1978, 18 (6), 2888–2896. https://doi.org/10.1103/PhysRevB.18.2888.
(98) Q Wiech. Soft X-Ray Band Spectra and the Electronic Structure of Metals and Materials; Fabian, D. J., Series Ed.; Academic Press, 1968.
(99) Hu, H.; Peslherbe, G. H. Accurate Mechanical and Electronic Properties of Spinel Nitrides from Density Functional Theory. J. Phys. Chem. C. 2021, 125 (17), 8927–8937. https://doi.org/10.1021/acs.jpcc.0c09896.
(100) Nielsen, O. H.; Martin, R. M. Quantum-Mechanical Theory of Stress and Force. Phys. Rev. B. 1985, 32 (6), 3780–3791. https://doi.org/10.1103/PhysRevB.32.3780.
(101) Zener, C. M.; Siegel, S. Elasticity and Anelasticity of Metals. J. Phys. Chem. 1949, 53 (9), 1468–1468. https://doi.org/10.1021/j150474a017.
(102) Garza, A. J.; Scuseria, G. E. Predicting Band Gaps with Hybrid Density Functionals. J. Phys. Chem. Lett. 2016, 7 (20), 4165–4170. https://doi.org/10.1021/acs.jpclett.6b01807.
(103) Hedin, L. On Correlation Effects in Electron Spectroscopies and the GW Approximation. J. Phys. Condens. Matter. 1999, 11 (42), R489–R528. https://doi.org/10.1088/0953-8984/11/42/201.
(104) Adamo, C.; Barone, V. Toward Reliable Density Functional Methods without Adjustable Parameters: The PBE0 Model. J. Chem. Phys. 1999, 110 (13), 6158–6170. https://doi.org/10.1063/1.478522.
(105) Zhao, Y.; Truhlar, D. G. The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-Class Functionals and 12 Other Functionals. Theor. Chem. Acc. 2008, 120 (1), 215–241. https://doi.org/10.1007/s00214-007-0310-x.
(106) Gonze, X.; Amadon, B.; Antonius, G.; Arnardi, F.; Baguet, L.; Beuken, J.-M.; Bieder, J.; Bottin, F.; Bouchet, J.; Bousquet, E.; et al. The Abinit project: Impact, Environment and Recent Developments. Comput. Phys. Commun. 2020, 248, 107042. https://doi.org/10.1016/j.cpc.2019.107042.
(107) Troullier, N.; Martins, J. L. Efficient Pseudopotentials for Plane-Wave Calculations. Phys. Rev. B. 1991, 43 (3), 1993–2006. https://doi.org/10.1103/PhysRevB.43.1993.
(108) Reining, L. The GW Approximation: Content, Successes and Limitations. WIREs Comput. Mol. Sci. 2018, 8 (3), e1344. https://doi.org/10.1002/wcms.1344.
(109) Hybertsen, M. S.; Louie, S. G. First-Principles Theory of Quasiparticles: Calculation of Band Gaps in Semiconductors and Insulators. Phys. Rev. Lett. 1985, 55 (13), 1418–1421. https://doi.org/10.1103/PhysRevLett.55.1418.
(110) Klier, K.; Spirko, J. A.; Landskron, K. M. Optical Absorption Anisotropy of High-Density, Wide-Gap, High-Hardness SiO2 Polymorphs Seifertite, Stishovite, and Coesite. Am. Mineral. 2015, 100 (1), 120–129. https://doi.org/doi:10.2138/am-2015-4890.
(111) Vella, E.; Messina, F.; Cannas, M.; Boscaino, R. Unraveling Exciton Dynamics in Amorphous Silicon Dioxide: Interpretation of the Optical Features from 8 to 11 EV. Phys. Rev. B. 2011, 83 (17), 174201. https://doi.org/10.1103/PhysRevB.83.174201.
(112) Astašauskas, V.; Bellissimo, A.; Kuksa, P.; Tomastik, C.; Kalbe, H.; Werner, W. S. M. Optical and Electronic Properties of Amorphous Silicon Dioxide by Single and Double Electron Spectroscopy. J. Electron Spectrosc. Relat. Phenom. 2020, 241, 146829. https://doi.org/10.1016/j.elspec.2019.02.008.
(113) Nekrashevich, S. S.; Gritsenko, V. A. Electronic Structure of Silicon Dioxide (a Review). Phys. Solid State. 2014, 56 (2), 207–222. https://doi.org/10.1134/S106378341402022X.
(114) Dawson, D. M.; Moran, R. F.; Ashbrook, S. E. An NMR Crystallographic Investigation of the Relationships between the Crystal Structure and 29Si Isotropic Chemical Shift in Silica Zeolites. J. Phys. Chem. C. 2017, 121 (28), 15198–15210. https://doi.org/10.1021/acs.jpcc.7b03730.
(115) Janes, Nathan.; Oldfield, Eric. Oxygen-17 NMR Study of Bonding in Silicates: The d-Orbital Controversy. J. Am. Chem. Soc. 1986, 108 (19), 5743–5753. https://doi.org/10.1021/ja00279a014.
(116) Yashima, M.; Ando, Y.; Tabira, Y. Crystal Structure and Electron Density of α-Silicon Nitride: Experimental and Theoretical Evidence for the Covalent Bonding and Charge Transfer. J. Phys. Chem. B. 2007, 111 (14), 3609–3613. https://doi.org/10.1021/jp0678507.
(117) Kiefer, B.; Shieh, S. R.; Duffy, T. S.; Sekine, T. Strength, Elasticity, and Equation of State of the Nanocrystalline Cubic Silicon Nitride Γ− Si3N4 to 68 GPa. Phys. Rev. B 2005, 72 (1), 014102. https://doi.org/10.1103/PhysRevB.72.014102.
(118) Reshak, A. H.; Khan, S. A.; Auluck, S. Electronic Band Structure and Specific Features of AA- and AB-Stacking of Carbon Nitride (C3N4): DFT Calculation. RSC Adv. 2014, 4 (14), 6957–6964. https://doi.org/10.1039/C3RA47130F.
(119) Wei, Q.; Zhang, Q.; Yan, H.; Zhang, M. Cubic C3N: A New Superhard Phase of Carbon-Rich Nitride. Materials. 2016, 9 (10), 840. https://doi.org/10.3390/ma9100840.
(120) Manjo, T.; Kitou, S.; Katayama, N.; Nakamura, S.; Katsufuji, T.; Nii, Y.; Arima, T.; Nasu, J.; Hasegawa, T.; Sugimoto, K.; Ishikawa, D.; Baron, A. Q. R.; Sawa, H. Do Electron Distributions with Orbital Degree of Freedom Exhibit Anisotropy? Mater. Adv. 2022, 3 (7), 3192–3198. https://doi.org/10.1039/D1MA01113H.
(121) Kaupp, M.; Schleyer, P. v. R.; Stoll, H.; Preuss, H. Pseudopotential Approaches to Ca, Sr, and Ba Hydrides. Why Are Some Alkaline Earth MX2 Compounds Bent? J. Chem. Phys. 1991, 94 (2), 1360–1366. https://doi.org/10.1063/1.459993.
(122) von Szentpály, L. Hard Bends Soft:  Bond Angle and Bending Force Constant Predictions for Dihalides, Dihydrides, and Dilithides of Groups 2 and 12. J. Phys. Chem. A. 2002, 106 (49), 11945–11949. https://doi.org/10.1021/jp026658b.
(123) Hassett, D. M.; Marsden, C. J. The Influence of d Orbitals on the Shape of Monomeric CaF2. J. Chem. Soc. Chem. Commun. 1990, No. 9, 667–669. https://doi.org/10.1039/C39900000667.
(124) Kim, D. Y.; Scheicher, R. H.; Lebègue, S.; Prasongkit, J.; Arnaud, B.; Alouani, M.; Ahuja, R. Crystal Structure of the Pressure-Induced Metallic Phase of SiH4 from ab initio theory. PNAS. 2008, 105 (43), 16454–16459. https://doi.org/10.1073/pnas.0804148105.
(125) Eremets, M. I.; Trojan, I. A.; Medvedev, S. A.; Tse, J. S.; Yao, Y. Superconductivity in Hydrogen Dominant Materials: Silane. Science. 2008, 319 (5869), 1506–1509. https://doi.org/10.1126/science.1153282.
(126) Yao, Y.; Tse, J. S.; Ma, Y.; Tanaka, K. Superconductivity in High-Pressure SiH4. EPL Europhys. Lett. 2007, 78 (3), 37003. https://doi.org/10.1209/0295-5075/78/37003.
(127) Zhu, W.; Zhang, X.; Zhu, W.; Xiao, H. Density Functional Theory Studies of Hydrostatic Compression of Crystalline Ammonium Perchlorate. Phys. Chem. Chem. Phys. 2008, 10 (48), 7318–7323. https://doi.org/10.1039/B810525A.
(128) Lee, B.; Lee, G. W. A Liquid-Liquid Transition Can Exist in Monatomic Transition Metals with a Positive Melting Slope. Sci. Rep. 2016, 6 (1), 35564. https://doi.org/10.1038/srep35564.
(129) Zhang, L.; Wang, Y.; Lv, J.; Ma, Y. Materials Discovery at High Pressures. Nat. Rev. Mater. 2017, 2 (4), 1–16. https://doi.org/10.1038/natrevmats.2017.5.
(130) Mujica, A.; Rubio, A.; Muñoz, A.; Needs, R. J. High-Pressure Phases of Group-IV, III--V, and II--VI Compounds. Rev. Mod. Phys. 2003, 75 (3), 863–912. https://doi.org/10.1103/RevModPhys.75.863.
(131) Venkataraman, A.; Amadi, E. V.; Chen, Y.; Papadopoulos, C. Carbon Nanotube Assembly and Integration for Applications. Nanoscale Res. Lett. 2019, 14 (1), 220. https://doi.org/10.1186/s11671-019-3046-3.
(132) Niyogi, S.; Hamon, M. A.; Hu, H.; Zhao, B.; Bhowmik, P.; Sen, R.; Itkis, M. E.; Haddon, R. C. Chemistry of Single-Walled Carbon Nanotubes. Acc. Chem. Res. 2002, 35 (12), 1105–1113. https://doi.org/10.1021/ar010155r.
(133) Lolli, G.; Zhang, L.; Balzano, L.; Sakulchaicharoen, N.; Tan, Y.; Resasco, D. E. Tailoring (n,m) Structure of Single-Walled Carbon Nanotubes by Modifying Reaction Conditions and the Nature of the Support of CoMo Catalysts. J. Phys. Chem. B. 2006, 110 (5), 2108–2115. https://doi.org/10.1021/jp056095e.
(134) Chopra, N. G.; Luyken, R. J.; Cherrey, K.; Crespi, V. H.; Cohen, M. L.; Louie, S. G.; Zettl, A. Boron Nitride Nanotubes. Science 1995, 269 (5226), 966–967. https://doi.org/10.1126/science.269.5226.966.
(135) Wang, J.; Huei Lee, C.; Khin Yap, Y. Recent Advancements in Boron Nitride Nanotubes. Nanoscale. 2010, 2 (10), 2028–2034. https://doi.org/10.1039/C0NR00335B.
(136) Kalay, S.; Yilmaz, Z.; Sen, O.; Emanet, M.; Kazanc, E.; Çulha, M. Synthesis of Boron Nitride Nanotubes and Their Applications. Beilstein J. Nanotechnol. 2015, 6 (1), 84–102. https://doi.org/10.3762/bjnano.6.9.
(137) Kim, K. S.; Kim, M. J.; Park, C.; Fay, C. C.; Chu, S.-H.; Kingston, C. T.; Simard, B. Scalable Manufacturing of Boron Nitride Nanotubes and Their Assemblies: A Review. Semicond. Sci. Technol. 2016, 32 (1), 013003. https://doi.org/10.1088/0268-1242/32/1/013003.
(138) Xu, T.; Zhang, K.; Cai, Q.; Wang, N.; Wu, L.; He, Q.; Wang, H.; Zhang, Y.; Xie, Y.; Yao, Y.; Chen, Y. Advances in Synthesis and Applications of Boron Nitride Nanotubes: A Review. Chem. Eng. J. 2022, 431, 134118. https://doi.org/10.1016/j.cej.2021.134118.
(139) Spencer, M. J. S. Gas Sensing Applications of 1D-Nanostructured Zinc Oxide: Insights from Density Functional Theory Calculations. Prog. Mater. Sci. 2012, 57 (3), 437–486. https://doi.org/10.1016/j.pmatsci.2011.06.001.
(140) Yu, K.; Zhang, Y. S.; Xu, F.; Li, Q.; Zhu, Z. Q.; Wan, Q. Significant Improvement of Field Emission by Depositing Zinc Oxide Nanostructures on Screen-Printed Carbon Nanotube Films. Appl. Phys. Lett. 2006, 88 (15), 153123. https://doi.org/10.1063/1.2195115.
(141) Wei, A.; Sun, X. W.; Xu, C. X.; Dong, Z. L.; Yu, M. B.; Huang, W. Stable Field Emission from Hydrothermally Grown ZnO Nanotubes. Appl. Phys. Lett. 2006, 88 (21), 213102. https://doi.org/10.1063/1.2206249.
(142) Hu, J. Q.; Li, Q.; Meng, X. M.; Lee, C. S.; Lee, S. T. Thermal Reduction Route to the Fabrication of Coaxial Zn/ZnO Nanocables and ZnO Nanotubes. Chem. Mater. 2003, 15 (1), 305–308. https://doi.org/10.1021/cm020649y.
(143) Wu, G. S.; Xie, T.; Yuan, X. Y.; Li, Y.; Yang, L.; Xiao, Y. H.; Zhang, L. D. Controlled Synthesis of ZnO Nanowires or Nanotubes via Sol–Gel Template Process. Solid State Commun. 2005, 134 (7), 485–489. https://doi.org/10.1016/j.ssc.2005.02.015.
(144) Li, T. M.; Lin, Z. A.; Zhang, L.; Chen, G. Controllable Preferential-Etching Synthesis of ZnO Nanotube Arrays on SiO2 Substrate for Solid-Phase Microextraction. Analyst. 2010, 135 (10), 2694–2699. https://doi.org/10.1039/C0AN00169D.
(145) Kong, X. Y.; Ding, Y.; Wang, Z. L. Metal−Semiconductor Zn−ZnO Core−Shell Nanobelts and Nanotubes. J. Phys. Chem. B 2004, 108 (2), 570–574. https://doi.org/10.1021/jp036993f.
(146) Xu, W. Z.; Ye, Z. Z.; Ma, D. W.; Lu, H. M.; Zhu, L. P.; Zhao, B. H.; Yang, X. D.; Xu, Z. Y. Quasi-Aligned ZnO Nanotubes Grown on Si Substrates. Appl. Phys. Lett. 2005, 87 (9), 093110. https://doi.org/10.1063/1.2035868.
(147) Özgür, Ü.; Alivov, Ya. I.; Liu, C.; Teke, A.; Reshchikov, M. A.; Doğan, S.; Avrutin, V.; Cho, S.-J.; Morkoç, H. A Comprehensive Review of ZnO Materials and Devices. J. Appl. Phys. 2005, 98 (4), 041301. https://doi.org/10.1063/1.1992666.
(148) Özgür, Ü.; Hofstetter, D.; Morkoç, H. ZnO Devices and Applications: A Review of Current Status and Future Prospects. Proc. IEEE. 2010, 98 (7), 1255–1268. https://doi.org/10.1109/JPROC.2010.2044550.
(149) Wang, B.; Nagase, S.; Zhao, J.; Wang, G. The Stability and Electronic Structure of Single-Walled ZnO Nanotubes by Density Functional Theory. Nanotechnology. 2007, 18 (34), 345706. https://doi.org/10.1088/0957-4484/18/34/345706.
(150) Marana, N. L.; Albuquerque, A. R.; La Porta, F. A.; Longo, E.; Sambrano, J. R. Periodic Density Functional Theory Study of Structural and Electronic Properties of Single-Walled Zinc Oxide and Carbon Nanotubes. J. Solid State Chem. 2016, 237, 36–47. https://doi.org/10.1016/j.jssc.2016.01.017.
(151) Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I. QUANTUM ESPRESSO: A Modular and Open-Source Software Project for Quantum Simulations of Materials. J. Phys. Condens. Matter. 2009, 21 (39), 395502. https://doi.org/10.1088/0953-8984/21/39/395502.
(152) Giannozzi, P.; Andreussi, O.; Brumme, T.; Bunau, O.; Nardelli, M. B.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Cococcioni, M. Advanced Capabilities for Materials Modelling with Quantum ESPRESSO. J. Phys. Condens. Matter .2017, 29 (46), 465901. https://doi.org/10.1088/1361-648X/aa8f79.
(153) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77 (18), 3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865.
(154) Malcıoğlu, O. B.; Gebauer, R.; Rocca, D.; Baroni, S. TurboTDDFT – A Code for the Simulation of Molecular Spectra Using the Liouville–Lanczos Approach to Time-Dependent Density-Functional Perturbation Theory. Comput. Phys. Commun. 2011, 182 (8), 1744–1754. https://doi.org/10.1016/j.cpc.2011.04.020.
(155) Karzel, H.; Potzel, W.; Köfferlein, M.; Schiessl, W.; Steiner, M.; Hiller, U.; Kalvius, G. M.; Mitchell, D. W.; Das, T. P.; Blaha, P. Lattice Dynamics and Hyperfine Interactions in ZnO and ZnSe at High External Pressures. Phys. Rev. B 1996, 53 (17), 11425–11438. https://doi.org/10.1103/PhysRevB.53.11425.
(156) Edvinsson, T. Optical Quantum Confinement and Photocatalytic Properties in Two-, One- and Zero-Dimensional Nanostructures. R. Soc. Open Sci. 5 (9), 180387. https://doi.org/10.1098/rsos.180387.
(157) Dag, S.; Wang, S.; Wang, L.-W. Large Surface Dipole Moments in ZnO Nanorods. Nano Lett. 2011, 11 (6), 2348–2352. https://doi.org/10.1021/nl200647e.
(158) Bachilo, S. M.; Strano, M. S.; Kittrell, C.; Hauge, R. H.; Smalley, R. E.; Weisman, R. B. Structure-Assigned Optical Spectra of Single-Walled Carbon Nanotubes. Science. 2002, 298 (5602), 2361–2366. https://doi.org/10.1126/science.1078727.
(159) Giustino, F. Electron-Phonon Interactions from First Principles. Rev. Mod. Phys. 2017, 89 (1), 015003. https://doi.org/10.1103/RevModPhys.89.015003.
(160) Kim, K.; Lambrecht, W. R. L.; Segall, B. Electronic Structure of GaN with Strain and Phonon Distortions. Phys. Rev. B. 1994, 50 (3), 1502–1505. https://doi.org/10.1103/PhysRevB.50.1502.
(161) Mingo, N. Calculation of Si Nanowire Thermal Conductivity Using Complete Phonon Dispersion Relations. Phys. Rev. B. 2003, 68 (11), 113308. https://doi.org/10.1103/PhysRevB.68.113308.
(162) Sakurai, J. J. (Jun J., 1933-1982. Modern Quantum Mechanics : Revised Edition, First impression, 2006.; Pearson Education: Delhi, India, 2006.
(163) Englman, R. The Jahn-Teller Effect in Molecules and Crystals; Interscience Monographs and Texts in Physics and Astronomy; Wiley-Interscience, 1972.
(164) Ziaeepour, H. Symmetry as a Foundational Concept in Quantum Mechanics. J. Phys. Conf. Ser. 2015, 626, 012074. https://doi.org/10.1088/1742-6596/626/1/012074.
(165) Kogan, E. Symmetry Classification of Energy Bands in Graphene and Silicene. Graphene. 2013, 2 (2), 74–80. https://doi.org/10.4236/graphene.2013.22011.
(166) Jahn, H. A.; Teller, E.; Donnan, F. G. Stability of Polyatomic Molecules in Degenerate Electronic States - I—Orbital Degeneracy. Proc. R. Soc. Lond. Ser. - Math. Phys. Sci. 1937, 161 (905), 220–235. https://doi.org/10.1098/rspa.1937.0142.
(167) Gabovich, A. M.; Voitenko, A. I.; Ekino, T.; Li, M. S.; Szymczak, H.; Pekala, M. Competition of Superconductivity and Charge Density Waves in Cuprates: Recent Evidence and Interpretation. Adv. Condens. Matter Phys. Online. 2010, 2010 (2010), 40.
(168) Bardeen, J.; Cooper, L. N.; Schrieffer, J. R. Theory of Superconductivity. Phys. Rev. 1957, 108 (5), 1175–1204. https://doi.org/10.1103/PhysRev.108.1175.
(169) Bardeen, J.; Cooper, L. N.; Schrieffer, J. R. Microscopic Theory of Superconductivity. Phys. Rev. 1957, 106 (1), 162–164. https://doi.org/10.1103/PhysRev.106.162.
(170) Bozin, E. S.; Yin, W. G.; Koch, R. J.; Abeykoon, M.; Hor, Y. S.; Zheng, H.; Lei, H. C.; Petrovic, C.; Mitchell, J. F.; Billinge, S. J. L. Local Orbital Degeneracy Lifting as a Precursor to an Orbital-Selective Peierls Transition. Nat. Commun. 2019, 10 (1), 3638. https://doi.org/10.1038/s41467-019-11372-w.
(171) Engelbrecht, J. R.; Randeria, M.; Sáde Melo, C. A. R. BCS to Bose Crossover: Broken-Symmetry State. Phys. Rev. B. 1997, 55 (22), 15153–15156. https://doi.org/10.1103/PhysRevB.55.15153.
(172) Coleman, P. Mixed Valence as an Almost Broken Symmetry. Phys. Rev. B. 1987, 35 (10), 5072–5116. https://doi.org/10.1103/PhysRevB.35.5072.
(173) Sinnecker, S.; Neese, F.; Lubitz, W. Dimanganese Catalase—Spectroscopic Parameters from Broken-Symmetry Density Functional Theory of the Superoxidized MnIII/MnIV State. JBIC J. Biol. Inorg. Chem. 2005, 10 (3), 231–238. https://doi.org/10.1007/s00775-005-0633-9.
(174) Khomskii, D. I. Transition Metal Compounds; Cambridge University Press: Cambridge, 2014. https://doi.org/10.1017/CBO9781139096782.
(175) Volovich, I. V.; Kozyrev, S. V. Manipulation of States of a Degenerate Quantum System. Proc. Steklov Inst. Math. 2016, 294 (1), 241–251. https://doi.org/10.1134/S008154381606016X.
(176) Weng, H.; Fang, C.; Fang, Z.; Dai, X. Topological Semimetals with Triply Degenerate Nodal Points in θ-phase Tantalum Nitride. Phys. Rev. B. 2016, 93 (24), 241202. https://doi.org/10.1103/PhysRevB.93.241202.
(177) Hong, J.; Lee, C.; Park, J.-S.; Shim, J. H. Control of Valley Degeneracy in MoS2 by Layer Thickness and Electric Field and Its Effect on Thermoelectric Properties. Phys. Rev. B. 2016, 93 (3), 035445. https://doi.org/10.1103/PhysRevB.93.035445.
(178) McIntosh, H. V. On Accidental Degeneracy in Classical and Quantum Mechanics. Am. J. Phys. 1959, 27 (9), 620–625. https://doi.org/10.1119/1.1934944.
(179) Gillet, Y.; Kontur, S.; Giantomassi, M.; Draxl, C.; Gonze, X. ab initio Approach to Second-Order Resonant Raman Scattering Including Exciton-Phonon Interaction. Sci. Rep. 2017, 7 (1), 7344. https://doi.org/10.1038/s41598-017-07682-y.
(180) Duffy, T. S.; Smith, R. F. Ultra-High Pressure Dynamic Compression of Geological Materials. Front. Earth Sci. 2019, 7 (23). https://doi.org/10.3389/feart.2019.00023.
(181) La Lone, B. M.; Asimow, P. D.; Fat’yanov, O. V.; Hixson, R. S.; Stevens, G. D.; Turley, W. D.; Veeser, L. R. High-Pressure Melt Curve of Shock-Compressed Tin Measured Using Pyrometry and Reflectance Techniques. J. Appl. Phys. 2019, 126 (22), 225103. https://doi.org/10.1063/1.5132318.
(182) Funk, D.; Gray, R.; Germann, T.; Martineau, R. A Summary Report on the 21st Century Needs and Challenges of Compression Science Workshop; LA-UR 09-07771; Santa Fe, NM, 2009.
(183) Fedotenko, T.; Dubrovinsky, L.; Aprilis, G.; Koemets, E.; Snigirev, A.; Snigireva, I.; Barannikov, A.; Ershov, P.; Cova, F.; Hanfland, M.; Dubrovinskaia, N. Laser Heating Setup for Diamond Anvil Cells for in Situ Synchrotron and in House High and Ultra-High Pressure Studies. Rev. Sci. Instrum. 2019, 90 (10), 104501. https://doi.org/10.1063/1.5117786.
(184) Lazor, P.; Shen, G.; Saxena, S. K. Laser-Heated Diamond Anvil Cell Experiments at High Pressure: Melting Curve of Nickel up to 700 Kbar. Phys. Chem. Miner. 1993, 20 (2), 86–90. https://doi.org/10.1007/BF00207200.
(185) Hrubiak, R.; Sinogeikin, S.; Rod, E.; Shen, G. The Laser Micro-Machining System for Diamond Anvil Cell Experiments and General Precision Machining Applications at the High Pressure Collaborative Access Team. Rev. Sci. Instrum. 2015, 86 (7), 072202. https://doi.org/10.1063/1.4926889.
(186) Kuzovnikov, M. A.; Tkacz, M.; Meng, H.; Kapustin, D. I.; Kulakov, V. I. High-Pressure Synthesis of Tantalum Dihydride. Phys. Rev. B. 2017, 96 (13), 134120. https://doi.org/10.1103/PhysRevB.96.134120.
(187) Mattesini, M.; De Almeida, J. S.; Dubrovinsky, L.; Dubrovinskaia, N.; Johansson, B.; Ahuja, R. High-Pressure and High-Temperature Synthesis of the Cubic TiO2 Polymorph. Phys. Rev. B. 2004, 70 (21), 212101. https://doi.org/10.1103/PhysRevB.70.212101.
(188) Duvall, G. E.; Graham, R. A. Phase Transitions under Shock-Wave Loading. Rev. Mod. Phys. 1977, 49 (3), 523–579. https://doi.org/10.1103/RevModPhys.49.523.
(189) Graham, R. A. Solids Under High-Pressure Shock Compression: Mechanics, Physics, and Chemistry. In Shock Wave and High Pressure Phenomena; Springer New York, 2012; pp 15-52. https://doi.org/10.1007/978-1-4613-9278-1
(190) Shteinberg, A. S.; Lin, Y.-C.; Son, S. F.; Mukasyan, A. S. Kinetics of High Temperature Reaction in Ni-Al System: Influence of Mechanical Activation. J. Phys. Chem. A. 2010, 114 (20), 6111–6116. https://doi.org/10.1021/jp1018586.
(191) Zel’dovich, Y. B.; Raizer, Y. P. Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena; Dover Books on Physics; Dover Publications, 1967.
(192) Dremin, A. N. Toward Detonation Theory: Shock Wave and High Pressure Phenomena; Springer New York, 1999.
(193) Tarver, C. M.; Forbes, J. W.; Urtiew, P. A. Nonequilibrium Zeldovich-von Neumann-Doring Theory and Reactive Flow Modeling of Detonation. Russ. J. Phys. Chem. B 2007, 1 (1), 39–45. https://doi.org/10.1134/S1990793107010058.
(194) Tokmakoff, A.; Fayer, M. D.; Dlott, D. D. Chemical Reaction Initiation and Hot-Spot Formation in Shocked Energetic Molecular Materials. J. Phys. Chem. 1993, 97 (9), 1901–1913. https://doi.org/10.1021/j100111a031.
(195) Ellgen, P. C. Thermodynamics and Chemical Equilibrium; Create space Independent Pub, 2014.
(196) Batsanov, S. S. Effects of Explosions on Materials: Modification and Synthesis Under High-Pressure Shock Compression; Springer New York, 2013.
(197) Monserrat, B. Electron–Phonon Coupling from Finite Differences. J. Phys. Condens. Matter. 2018, 30 (8), 083001. https://doi.org/10.1088/1361-648x/aaa737.
(198) Ziman, J. M. Principles of the Theory of Solids; Cambridge university press, 1972.
(199) Dub, S. N.; Petrusha, I. A. Mechanical Properties of Polycrystalline CBN Obtained from Pyrolytic GBN by Direct Transformation Technique. High Press. Res. 2006, 26 (2), 71–77. https://doi.org/10.1080/08957950600764239.
(200) Killelea, D. R.; Utz, A. L. On the Origin of Mode- and Bond-Selectivity in Vibrationally Mediated Reactions on Surfaces. Phys. Chem. Chem. Phys. 2013, 15 (47), 20545–20554. https://doi.org/10.1039/C3CP53765J.
(201) Guo, H.; Jackson, B. Mode-Selective Chemistry on Metal Surfaces: The Dissociative Chemisorption of CH4 on Pt(111). J. Chem. Phys. 2016, 144 (18), 184709. https://doi.org/10.1063/1.4948941.
(202) Bohr, N. Über Die Anwendung Der Quantentheorie Auf Den Atombau. Z. Für Phys. 1923, 13 (1), 117–165. https://doi.org/10.1007/BF01328209.
(203) Bohr, N. The Quantum Postulate and the Recent Development of Atomic Theory. Nature 1928, 121 (3050), 580–590. https://doi.org/10.1038/121580a0.
(204) Atkins, P.; de Paula, J.; Friedman, R. Quanta, Matter, and Change: A Molecular Approach to Physical Chemistry; OUP Oxford, 2009.
(205) Mccaw, C. S. Orbitals: With Applications In Atomic Spectra; World Scientific Publishing Company, 2015.
(206) Sakurai, J. J.; Napolitano, J. Modern Quantum Mechanics; Cambridge University Press, 2017.
(207) Edmonds, A. R. Angular Momentum in Quantum Mechanics; Princeton University Press, 1996.
(208) Hollas, J. M. Modern Spectroscopy; Wiley, 1988.
(209) Condon, E. U.; Shortley, G. The Theory of Atomic Spectra; Cambridge University Press, 1935.
(210) Dunlap, B. I. Three-Center Gaussian-Type-Orbital Integral Evaluation Using Solid Spherical Harmonics. Phys. Rev. A. 1990, 42 (3), 1127–1137. https://doi.org/10.1103/PhysRevA.42.1127.
(211) Dunlap, B. I. Angular Momentum in Molecular Quantum Mechanical Integral Evaluation. Comput. Phys. Commun. 2005, 165 (1), 18–36. http://dx.doi.org/10.1016/j.cpc.2004.09.002.
(212) Anguang Hu; Nora W. C. Chan; Brett I. Dunlap; Sambe H; Felton R. H. Orbital Angular Momentum Eigenfunctions for Fast and Numerically Stable Evaluations of Closed-Form Pseudopotential Matrix Elements. J. Chem. Phys. 2017, 147 (7), 074102. https://doi.org/10.1063/1.4985874.
(213) Hu, A.; Dunlap, B. I. Three-Center Molecular Integrals and Derivatives Using Solid Harmonic Gaussian Orbital and Kohn–Sham Potential Basis Sets. Can. J. Chem. 2013, 91 (9), 907–915. https://doi.org/10.1139/cjc-2012-0485.
(214) Dorothea Golze; Niels Benedikter; Marcella Iannuzzi; Jan Wilhelm; Jürg Hutter. Fast Evaluation of Solid Harmonic Gaussian Integrals for Local Resolution-of-the-Identity Methods and Range-Separated Hybrid Functionals. J. Chem. Phys. 2017, 146 (3), 034105. https://doi.org/10.1063/1.4973510.
(215) Dunlap, B. I.; Zope, R. R. Efficient Quantum-Chemical Geometry Optimization and the Structure of Large Icosahedral Fullerenes. Chem. Phys. Lett. 2006, 422 (4–6), 451–454. http://dx.doi.org/10.1016/j.cplett.2006.02.100.
(216) Matveev, A. V.; Nasluzov, V. A.; Rösch, N. Linear Response Formalism for the Douglas–Kroll–Hess Approach to the Dirac–Kohn–Sham Problem: First- and Second-Order Nuclear Displacement Derivatives of the Energy. Int. J. Quantum Chem. 2007, 107 (15), 3236–3249. https://doi.org/10.1002/qua.21501.
(217) Nikodem, A.; Matveev, A. V.; Soini, T. M.; Rösch, N. Load Balancing by Work–Stealing in Quantum Chemistry Calculations: Application to Hybrid Density Functional Methods. Int. J. Quantum Chem. 2014, 114 (12), 813–822. https://doi.org/10.1002/qua.24677.
(218) Bacon, D.; Chuang, I. L.; Harrow, A. W. Efficient Quantum Circuits for Schur and Clebsch-Gordan Transforms. Phys. Rev. Lett. 2006, 97 (17), 170502. https://doi.org/10.1103/PhysRevLett.97.170502.
(219) Hobson, E. W. The Theory of Spherical and Ellipsoidal Harmonics; Cambridge University Press, 1955.
(220) Piecuch, P. On the Addition Theorems for Solid Spherical Harmonics. Rep. Math. Phys. 1986, 24 (2), 187–192. https://doi.org/10.1016/0034-4877(86)90052-2.
(221) Sack, R. A. Three‐Dimensional Addition Theorem for Arbitrary Functions Involving Expansions in Spherical Harmonics. J. Math. Phys. 1964, 5 (2), 252–259. https://doi.org/10.1063/1.1704115.
(222) Hu, A.; Staufer, M.; Birkenheuer, U.; Igoshine, V.; Rösch, N. Analytical Evaluation of Pseudopotential Matrix Elements with Gaussian-Type Solid Harmonics of Arbitrary Angular Momentum. Int. J. Quantum Chem. 2000, 79 (4), 209–221. https://doi.org/10.1002/1097-461x(2000)79:4<209::aid-qua2>3.0.co;2-j
(223) Boys, S. F.; Cook, G. B.; Reeves, C. M.; Shavitt, I. Automatic Fundamental Calculations of Molecular Structure. Nature 1956, 178 (4544), 1207–1209. https://doi.org/10.1038/1781207a0.
(224) McMurchie, L. E.; Davidson, E. R. One- and Two-Electron Integrals over Cartesian Gaussian Functions. J. Comput. Phys. 1978, 26 (2), 218–231. http://dx.doi.org/10.1016/0021-9991(78)90092-X.
(225) Helgaker, T.; Jorgensen, P.; Olsen, J. Molecular Electronic-Structure Theory; Wiley, 2008.
(226) Rösch, N.; Krüger, S.; Nasluzov, V. A.; Matveev, A. V. ParaGauss: The Density Functional Program ParaGauss for Complex Systems in Chemistry. In High Performance Computing in Science and Engineering, Garching 2004; Bode, A., Durst, F., Eds.; Springer: Berlin, Heidelberg, 2005; pp 285–296. https://doi.org/10.1007/3-540-28555-5_25.
(227) Clementi, E. Methods and Techniques in Computational Chemistry: METECC, 94th ed.; STEF, 1993; Vol. B: Medium Size System.
(228) Deshpande, L. S.; Phillips, K.; Huang, B.; DeLorenzo, R. J. Chronic Behavioral and Cognitive Deficits in a Rat Survival Model of Paraoxon Toxicity. NeuroToxicology 2014, 44, 352–357. https://doi.org/10.1016/j.neuro.2014.08.008.
(229) Organophosphates: A Common But Deadly Pesticide. Culture. https://www.nationalgeographic.com/culture/article/130718-organophosphates-pesticides-indian-food-poisoning (accessed 2022-05-18).
(230) Project Coast: Apartheid’s Chemical and Biological Warfare Programme | UNIDIR. https://unidir.org/publication/project-coast-apartheids-chemical-and-biological-warfare-programme (accessed 2022-05-18).
(231) Nishiwaki, Y.; Maekawa, K.; Ogawa, Y.; Asukai, N.; Minami, M.; Omae, K.; null, null. Effects of Sarin on the Nervous System in Rescue Team Staff Members and Police Officers 3 Years after the Tokyo Subway Sarin Attack. Environ. Health Perspect. 2001, 109 (11), 1169–1173. https://doi.org/10.1289/ehp.011091169.
(232) Kumar, D. N.; Rajeshwari, A.; Alex, S. A.; Sahu, M.; Raichur, A. M.; Chandrasekaran, N.; Mukherjee, A. Developing Acetylcholinesterase-Based Inhibition Assay by Modulated Synthesis of Silver Nanoparticles: Applications for Sensing of Organophosphorus Pesticides. RSC Adv. 2015, 5 (76), 61998–62006. https://doi.org/10.1039/C5RA10146H.
(233) Schwierking, J. R.; Menzel, L. W.; Menzel, E. R. Organophosphate Nerve Agent Detection with Europium Complexes. Sci. World J. 2004, 4, 948–955. https://doi.org/10.1100/tsw.2004.194.
(234) Zhan, S.-W.; Tseng, W.-B.; Tseng, W.-L. Impact of Nanoceria Shape on Degradation of Diethyl Paraoxon: Synthesis, Catalytic Mechanism, and Water Remediation Application. Environ. Res. 2020, 188, 109653. https://doi.org/10.1016/j.envres.2020.109653.
(235) Kuhn, D. L.; Zander, Z.; Kulisiewicz, A. M.; Debow, S. M.; Haffey, C.; Fang, H.; Kong, X.-T.; Qian, Y.; Walck, S. D.; Govorov, A. O.; Rao, Y.; Dai, H.-L.; DeLacy, B. G. Fabrication of Anisotropic Silver Nanoplatelets on the Surface of TiO2 Fibers for Enhanced Photocatalysis of a Chemical Warfare Agent Simulant, Methyl Paraoxon. J. Phys. Chem. C. 2019, 123 (32), 19579–19587. https://doi.org/10.1021/acs.jpcc.9b04026.
(236) Chronic behavioral and cognitive deficits in a rat survival model of paraoxon toxicity - ScienceDirect. https://www.sciencedirect.com/science/article/abs/pii/S0161813X14001478?via%3Dihub (accessed 2022-05-18).
(237) Dale, T. J.; Rebek Jr., J. Hydroxy Oximes as Organophosphorus Nerve Agent Sensors. Angew. Chem. 2009, 121 (42), 7990–7992. https://doi.org/10.1002/ange.200902820.
(238) Kingery, A. F.; Allen, H. E. The Environmental Fate of Organophosphorus Nerve Agents: A Review. Toxicol. Environ. Chem. 1995, 47 (3–4), 155–184. https://doi.org/10.1080/02772249509358137.
(239) Hulse, E. J.; Davies, J. O. J.; Simpson, A. J.; Sciuto, A. M.; Eddleston, M. Respiratory Complications of Organophosphorus Nerve Agent and Insecticide Poisoning. Implications for Respiratory and Critical Care. Am. J. Respir. Crit. Care Med. 2014, 190 (12), 1342–1354. https://doi.org/10.1164/rccm.201406-1150CI.
(240) Chai, M. K.; Tan, G. H. Validation of a Headspace Solid-Phase Microextraction Procedure with Gas Chromatography-Electron Capture Detection of Pesticide Residues in Fruits and Vegetables. Food Chem. 2009, 117 (3), 561–567. https://doi.org/10.1016/j.foodchem.2009.04.034.
(241) Katz, E.; Willner, I. Integrated Nanoparticle–Biomolecule Hybrid Systems: Synthesis, Properties, and Applications. Angew. Chem. Int. Ed. 2004, 43 (45), 6042–6108. https://doi.org/10.1002/anie.200400651.
(242) Makwana, B. A.; Vyas, D. J.; Bhatt, K. D.; Jain, V. K.; Agrawal, Y. K. Highly Stable Antibacterial Silver Nanoparticles as Selective Fluorescent Sensor for Fe3+ Ions. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2015, 134, 73–80. https://doi.org/10.1016/j.saa.2014.05.044.
(243) Lee, S.; Xu, H.; Wempner, J.; Xu, H.; Wen, J. Discovery of Gold Nanoparticles in Marcellus Shale. ACS Earth Space Chem. 2021. https://doi.org/10.1021/acsearthspacechem.0c00240.
(244) Zhou, X.; Zhou, F.; Liu, H.; Yang, L.; Liu, J. Assembly of Polymer–Gold Nanostructures with High Reproducibility into a Monolayer Film SERS Substrate with 5 Nm Gaps for Pesticide Trace Detection. Analyst. 2013, 138 (19), 5832–5838. https://doi.org/10.1039/C3AN00914A.
(245) Li, Z.; Wang, Y.; Ni, Y.; Kokot, S. Unmodified Silver Nanoparticles for Rapid Analysis of the Organophosphorus Pesticide, Dipterex, Often Found in Different Waters. Sens. Actuators B Chem. 2014, 193, 205–211. https://doi.org/10.1016/j.snb.2013.11.096.
(246) Li, X.; Cui, H.; Zeng, Z. A Simple Colorimetric and Fluorescent Sensor to Detect Organophosphate Pesticides Based on Adenosine Triphosphate-Modified Gold Nanoparticles. Sensors. 2018, 18 (12), 4302. https://doi.org/10.3390/s18124302.
(247) El Alami, A.; Lagarde, F.; Tamer, U.; Baitoul, M.; Daniel, P. Enhanced Raman Spectroscopy Coupled to Chemometrics for Identification and Quantification of Acetylcholinesterase Inhibitors. Vib. Spectrosc. 2016, 87, 27–33. https://doi.org/10.1016/j.vibspec.2016.09.005.
(248) Chen, W.; Long, F.; Song, G.; Chen, J.; Peng, S.; Li, P. Rapid and Sensitive Detection of Pesticide Residues Using Dynamic Surface-Enhanced Raman Spectroscopy. J. Raman Spectrosc. 2020, 51 (4), 611–618. https://doi.org/10.1002/jrs.5823.
(249) Ma, Y.; Huang, Z.; Li, S.; Zhao, C. Surface-Enhanced Raman Spectroscopy on Self-Assembled Au Nanoparticles Arrays for Pesticides Residues Multiplex Detection under Complex Environment. Nanomater. Basel Switz. 2019, 9 (3), E426. https://doi.org/10.3390/nano9030426.
(250) Ma, B.; Li, P.; Yang, L.; Liu, J. Based on Time and Spatial-Resolved SERS Mapping Strategies for Detection of Pesticides. Talanta. 2015, 141, 1–7. https://doi.org/10.1016/j.talanta.2015.03.053.
(251) Ma, Y.; Liu, H.; Mao, M.; Meng, J.; Yang, L.; Liu, J. Surface-Enhanced Raman Spectroscopy on Liquid Interfacial Nanoparticle Arrays for Multiplex Detecting Drugs in Urine. Anal. Chem. 2016, 88 (16), 8145–8151. https://doi.org/10.1021/acs.analchem.6b01884.
(252) Yan, X.; Song, Y.; Zhu, C.; Li, H.; Du, D.; Su, X.; Lin, Y. MnO2 Nanosheet-Carbon Dots Sensing Platform for Sensitive Detection of Organophosphorus Pesticides. Anal. Chem. 2018, 90 (4), 2618–2624. https://doi.org/10.1021/acs.analchem.7b04193.
(253) Wang, M.; Shi, G.; Zhu, Y.; Wang, Y.; Ma, W. Au-Decorated Dragonfly Wing Bioscaffold Arrays as Flexible Surface-Enhanced Raman Scattering (SERS) Substrate for Simultaneous Determination of Pesticide Residues. Nanomaterials. 2018, 8 (5), 289. https://doi.org/10.3390/nano8050289.
(254) Wang, H.; Qu, B.; Liu, H.; Ding, J.; Ren, N. Analysis of Organochlorine Pesticides in Surface Water of the Songhua River Using Magnetoliposomes as Adsorbents Coupled with GC-MS/MS Detection. Sci. Total Environ. 2018, 618, 70–79. https://doi.org/10.1016/j.scitotenv.2017.11.046.
(255) Fathi, F.; Lagugné-Labarthet, F.; Pedersen, D. B.; Kraatz, H.-B. Studies of the Interaction of Two Organophosphonates with Nanostructured Silver Surfaces. Analyst. 2012, 137 (19), 4448–4453. https://doi.org/10.1039/C2AN35641D.
(256) Liu, H.; Yang, Z.; Meng, L.; Sun, Y.; Wang, J.; Yang, L.; Liu, J.; Tian, Z. Three-Dimensional and Time-Ordered Surface-Enhanced Raman Scattering Hotspot Matrix. J. Am. Chem. Soc. 2014, 136 (14), 5332–5341. https://pubs.acs.org/doi/10.1021/ja501951v
(257) Li, P.; Dong, R.; Wu, Y.; Liu, H.; Kong, L.; Yang, L. Polystyrene/Ag Nanoparticles as Dynamic Surface-Enhanced Raman Spectroscopy Substrates for Sensitive Detection of Organophosphorus Pesticides. Talanta. 2014, 127, 269–275. https://doi.org/10.1016/j.talanta.2014.03.075.
(258) Weng, S.; Li, M.; Chen, C.; Gao, X.; Zheng, S.; Zeng, X. Fast and Accurate Determination of Organophosphate Pesticides Using Surface-Enhanced Raman Scattering and Chemometrics. Anal. Methods. 2015, 7 (6), 2563–2567. https://doi.org/10.1039/C4AY03067B.
(259) Zhao, L.; Deng, C.; Xue, S.; Liu, H.; Hao, L.; Zhu, M. Multifunctional G-C3N4/Ag NPs Intercalated GO Composite Membrane for SERS Detection and Photocatalytic Degradation of Paraoxon-Ethyl. Chem. Eng. J. 2020, 402, 126223. https://doi.org/10.1016/j.cej.2020.126223.
(260) Tran, M.; Fallatah, A.; Whale, A.; Padalkar, S. Utilization of Inexpensive Carbon-Based Substrates as Platforms for Sensing. Sensors. 2018, 18 (8), 2444. https://doi.org/10.3390/s18082444.
(261) Tran, M.; Roy, S.; Kmiec, S.; Whale, A.; Martin, S.; Sundararajan, S.; Padalkar, S. Formation of Size and Density Controlled Nanostructures by Galvanic Displacement. Nanomaterials. 2020, 10 (4), 644. https://doi.org/10.3390/nano10040644.
(262) Makkar, P.; Ghosh, N. N. A Review on the Use of DFT for the Prediction of the Properties of Nanomaterials. RSC Adv. 2021, 11 (45), 27897–27924. https://doi.org/10.1039/D1RA04876G.
(263) Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. I. J.; Refson, K.; Payne, M. C. First Principles Methods Using CASTEP. Z. Für Krist. - Cryst. Mater. 2005, 220 (5–6), 567–570. https://doi.org/10.1524/zkri.220.5.567.65075.
(264) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77 (18), 3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865.
(265) Sanchez-Portal, D.; Artacho, E.; Soler, J. M. Projection of Plane-Wave Calculations into Atomic Orbitals. Solid State Commun. 1995, 95 (10), 685–690. https://doi.org/10.1016/0038-1098(95)00341-X.
(266) Hamann, D. R.; Schlüter, M.; Chiang, C. Norm-Conserving Pseudopotentials. Phys. Rev. Lett. 1979, 43 (20), 1494–1497. https://doi.org/10.1103/PhysRevLett.43.1494.
(267) Miwa, K. Prediction of Raman Spectra with Ultrasoft Pseudopotentials. Phys. Rev. B. 2011, 84 (9), 094304. https://doi.org/10.1103/PhysRevB.84.094304.
(268) Porezag, D.; Pederson, M. R. Infrared Intensities and Raman-Scattering Activities within Density-Functional Theory. Phys. Rev. B. 1996, 54 (11), 7830–7836. https://doi.org/10.1103/PhysRevB.54.7830.
(269) Liu, H.; Yang, Z.; Meng, L.; Sun, Y.; Wang, J.; Yang, L.; Liu, J.; Tian, Z. Three-Dimensional and Time-Ordered Surface-Enhanced Raman Scattering Hotspot Matrix. J. Am. Chem. Soc. 2014, 136 (14), 5332–5341. https://doi.org/10.1021/ja501951v.
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top