Login | Register

Robust Watermarking Schemes for Digital Images

Title:

Robust Watermarking Schemes for Digital Images

Elayan, Abdallah Muneer (2013) Robust Watermarking Schemes for Digital Images. Masters thesis, Concordia University.

[thumbnail of Abdallah_Elayan_MSc_S2014.pdf]
Preview
Text (application/pdf)
Abdallah_Elayan_MSc_S2014.pdf - Accepted Version
5MB

Abstract

With the rapid development of multimedia and the widespread distribution of digital data over the internet networks, it has become easy to obtain the intellectual properties. Consequently, the multimedia owners need more than ever before to protect their data and to prevent their unauthorized use. Digital watermarking has been proposed as an effective method for copyright protection and an unauthorized manipulation of the multimedia. Watermarking refers to the process of embedding an identification code or some other information called watermark into digital multimedia without affecting the visual quality of the host multimedia. Such a watermark can be used for several purposes including copyright protection and fingerprinting of the multimedia for tracing and data authentication.
The goal in a watermarking scheme is to embed a watermark that is robust against various types of attacks while preserving the perceptual quality of the cover image. A variety of schemes have been proposed in the literature to achieve these goals for watermarking of images. These schemes either provide good imperceptibility of the watermark without sufficient resilience to certain types of attacks or provide good robustness against attacks at the expense of degraded perceptual quality of the cover images. The objective of this work is to develop image watermarking schemes with performance that is superior to those of existing schemes in terms of their robustness against various types of attacks while preserving the perceptual of the cover image. In this thesis, two new digital image watermarking schemes are proposed.
In the first scheme, an Arnold transform integrated DCT-SVD based image watermarking scheme is developed. The main idea in this scheme is to improve the robustness of the watermarking further by scrambling the watermark data using the Arnold transform while still preserving the good perceptibility of the watermarked image furnished by a DCT-SVD based embedding. Also, it is shown that considerable savings in the computation time to recover the original watermark image can be provided by using the anti-Arnold transform in the watermark extraction process.
In the second scheme, a DWT-SVD digital image watermarking scheme that makes use of visual cryptography to embed and extract a binary watermark image is developed. The use of visual cryptography in the proposed watermarking scheme is intended to provide improved robustness against attacks along with furnishing security to the content of the embedded data.
Extensive experiments are conducted throughout this investigation in order to examine the performance of the proposed watermarking schemes. It is shown that the two proposed watermarking schemes developed in this thesis provide a performance superior to that of the existing schemes in terms of robustness against various types of attacks while preserving the perceptual quality of the cover image.

Divisions:Concordia University > Gina Cody School of Engineering and Computer Science > Electrical and Computer Engineering
Item Type:Thesis (Masters)
Authors:Elayan, Abdallah Muneer
Institution:Concordia University
Degree Name:M.A. Sc.
Program:Electrical and Computer Engineering
Date:December 2013
Thesis Supervisor(s):Ahmad, M. Omair
ID Code:978203
Deposited By: ABDALLAH ALAYAN
Deposited On:16 Jun 2014 18:49
Last Modified:18 Jan 2018 17:46
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top