Login | Register

On the Spectral Theory of the Laplacian on Compact Polyhedral Surfaces of Arbitrary Genus


On the Spectral Theory of the Laplacian on Compact Polyhedral Surfaces of Arbitrary Genus

Kokotov, Alexey (2011) On the Spectral Theory of the Laplacian on Compact Polyhedral Surfaces of Arbitrary Genus. In: Computational Approach to Riemann Surfaces. Lecture Notes in Mathematics, pp. 227-253.

[thumbnail of kokotov2011.pdf]
Text (application/pdf)
kokotov2011.pdf - Accepted Version

Official URL: http://dx.doi.org/10.1007/978-3-642-17413-1_8


Compact polyhedral surfaces (or, equivalently, compact Riemann surfaces with conformal flat conical metrics) of an arbitrary genus are considered. After giving a short self- contained survey of their basic spectral properties, we study the zeta-regularized determinant of the Laplacian as
a functional on the moduli space of these surfaces. An explicit formula for this determinant is obtained.

Divisions:Concordia University > Faculty of Arts and Science > Mathematics and Statistics
Item Type:Book Section
Authors:Kokotov, Alexey
Journal or Publication:Computational Approach to Riemann Surfaces - Lecture Notes in Mathematics
Digital Object Identifier (DOI):10.1007/978-3-642-17413-1_8
ID Code:976818
Deposited By: Danielle Dennie
Deposited On:28 Jan 2013 20:54
Last Modified:18 Jan 2018 17:43


1.Aurell, E., Salomonson, P.: Further Results on Functional Determinants of Laplacians in Simplicial Complexes, hep-th/9405140
2.Bobenko, A.I.: Introduction to compact Riemann surfaces. In: Bobenko, A.I., Klein, Ch. (eds.) Lecture Notes in Mathematics 2013, pp. 3–64. Springer, Berlin (2011)
3.Burghelea, D., Friedlander, L., Kappeler, T.: Meyer-Vietoris type formula for determinants of elliptic differential operators. J. Funct. Anal. 107, 34–65 (1992)»
4.Carslaw, H.S.: The Green’s function for a wedge of any angle, and other problems in the conduction of heat. Proc. Lond. Math. Soc. 8, 365–374 (1910)»
5.Cheeger, J.: Spectral geometry of singular Riemannian spaces. J. Diff. Geom. 18, 575–657 (1983)
6.D’Hoker, E., Phong, D.H.: Functional determinants on Mandelstam diagrams. Comm. Math. Phys. 124, 629–645 (1989)»
7.Fay, J.D.: Theta-functions on Riemann surfaces. Lect. Notes in Math., vol. 352. Springer, Berlin (1973)
8.Fay, J.D.: Kernel functions, analytic torsion, and moduli spaces. Memoir. AMS 464 (1992)
9.Fursaev, D.V.: The heat-kernel expansion on a cone and quantum fields near cosmic strings. Class. Quant. Grav. 11, 1431–1443 (1994)»
10.Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Wiley, New York (1978)
11.King, h.K.: Determinants of Laplacians on the space of conical metrics on the sphere. Trans. AMS 339, 525–536 (1993)
12.Klochko, Y., Kokotov, A.: Genus one polyhedral surfaces, spaces of quadratic differentials on tori and determinants of Laplacians. Manuscripta Math. 122, 195–216 (2007)»
13.Kokotov, A., Korotkin, D.: Tau-functions on the spaces of Abelian and quadratic differentials and determinants of Laplacians in Strebel metrics of finite volume, preprint of the Max-Planck Institute for Mathematics in the Science, Leipzig, 46/2004; math.SP/0405042
14.Kokotov, A.: Preprint (127) of Max-Planck-Institut für Mathematik in Bonn (2007)
15.Kokotov, A., Korotkin, D.: Tau-functions on spaces of Abelian differentials and higher genus generalization of Ray-Singer formula. J. Differ. Geom. 82, 35–100 (2009)
16.Kondratjev, V.: Boundary value problems for elliptic equations in domains with conical and angle points. Proc. Moscow Math. Soc. 16, 219–292 (1967)
17.Kontsevich, M., Zorich, A.: Connected components of the moduli spaces of holomorphic differentials with prescribed singularities. Invent. Math. 153, 631–678 (2003)» CrossRef
18.Kontsevitch, M., Zorich A.: Lyapunov exponents and Hodge theory, hep-th/9701164
19.Loya, P., McDonald, P., Park, J.: Zeta regularized determinants for conic manifolds. J. Funct. Anal. 242(1), 195–229 (2007)»
20.McKean, H.P., Singer, I.M.: Curvature and the eigenvalues of the Laplacian. J. Diff. Geom. 1, 43–69 (1967)
21.Mooers, E.: Heat kernel asymptotics on manifolds with conic singularities. J. D’Analyse Mathématique, 78, 1–36 (1999)
22.Nazarov, S., Plamenevskii, B.: Elliptic boundary value problems in domains with piece-wise smooth boundary, Moscow, “Nauka” (1992)
23.Osgood, B., Phillips, R., Sarnak, P.: Extremals of determinants of laplacian. J. Funct. Anal. 80(1), 148–211 (1988)»
24.Ray D.B., Singer I.M.: Analytic torsion for complex manifolds. Ann. Math. 98(1), 154–177 (1973)»
25.Taylor, M.: Partial Differential Equations, vol. 2. Springer, New York (1996) (Appl. Math. Sci., 116)
26.Troyanov, M.: Les surfaces euclidiennes à singularités coniques. L’Enseignement Mathématique, 32, 79–94 (1986)
27.Zorich, A.: Flat Surfaces. In Cartier, P., Julia, B., Moussa, P., Vanhove, P. (eds.) Frontiers in Number theory, Physics and Geometry. Vol. 1: On random matrices, zeta functions, and dynamical systems, pp. 439–586. Springer, Berlin (2006)
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top