Login | Register

Magnetic force microscopic study of Ce 2 (Fe, Co) 14 B, and its modifications by Ni and Cu


Magnetic force microscopic study of Ce 2 (Fe, Co) 14 B, and its modifications by Ni and Cu

Wang, Tian and Medraj, Mamoun (2018) Magnetic force microscopic study of Ce 2 (Fe, Co) 14 B, and its modifications by Ni and Cu. Journal of Magnetism and Magnetic Materials . ISSN 03048853 (In Press)

[thumbnail of Wang-2018.pdf]
Text (application/pdf)
Wang-2018.pdf - Accepted Version
Available under License Spectrum Terms of Access.

Official URL: http://dx.doi.org/10.1016/j.jmmm.2018.03.058


The domain width and domain wall energy of the Ce2Fe14-xCoxB solid solution are studied for the first time in this work. The influence of Co content on these properties has been analyzed with the aid of magnetic force microscopy using diffusion couple and key alloys. The domain widths of Ce2Fe14-xCoxB decreased with increasing Co content at about 0.02 μm per 1 at.% Co. In Ce2Fe14-xCoxB, phase shift, domain width and saturation magnetization are related in a way that lower average domain width is associated with higher phase shift and higher saturation magnetization. The highest domain wall energy of Ce2Fe14-xCoxB is measured as 31.7 erg/cm2 after dissolving 14 at.% Co (x=2.38). The effects of Ni and Cu on the domain width and domain wall energy of Ce2Fe14-xCoxB (x=1.02) are also studied and reported using response surfaces. The domain width and domain wall energy of this solid solution increased after doping with 1 at.% Ni at constant Co content of 6 at.%, measuring 1.39 μm for domain width and 33.4 erg/cm2 for domain wall energy. Both properties were determined as 0.71 μm and 18.6 erg/cm2, respectively, after doping with 0.8 at.% Cu, while keeping Co content constant at 6 at.%. When Ce2Fe14-xCoxB (x=1.02) is doped with both Ni (1 at.%) and Cu (0.8 at.%), the domain width and domain wall energy measured 0.99 μm and 33.8 erg/cm2, respectively.

Divisions:Concordia University > Gina Cody School of Engineering and Computer Science > Mechanical, Industrial and Aerospace Engineering
Item Type:Article
Authors:Wang, Tian and Medraj, Mamoun
Journal or Publication:Journal of Magnetism and Magnetic Materials
Date:25 March 2018
  • General Motors of Canada Ltd
  • Natural Sciences and Engineering Research Council of Canada
Digital Object Identifier (DOI):10.1016/j.jmmm.2018.03.058
Keywords:Magnetic force microscopy; magnetic Ce2Fe14-xCoxB; domain width; domain wall energy
ID Code:983633
Deposited By: Michael Biron
Deposited On:28 Mar 2018 20:21
Last Modified:25 Mar 2020 00:00


J.J. Wysłocki, F. Bolzoni, Magnetic domain structure and domain-wall energy in Y2Fe13MnB and Y2Fe12Mn3B compounds, J. Magn. Magn. Mater. 83(1) (1990) 239-240.

A. Hubert and R. Schafer, Magnetic domains: The analysis of magnetic microstructures, Springer-Verlag Berlin Heidelberg, Germany, 1998, pp. 201-315.

L. Folks, R.C. Woodward, The use of MFM for investigating domain structures in modern permanent magnet materials, J. Magn. Magn. Mater. 190(1-2) (1998) 28-41.

T. Wang, D. Kevorkov and M. Medraj, Phase equilibria and magnetic phases in the Ce-Fe-Co-B system, Materials 10(1) (2017) 16.

L. Batista, U. Rabe, S. Hirsekorn, Determination of the easy axes of small ferromagnetic precipitates in a bulk material by combined magnetic force microscopy and electron backscatter diffraction techniques, Ultramicroscopy 146 (2014) 17-46.

B. Sun, G.Q. Li, W.X. Zhao, Z. Shen, Y.H. Liu, P. Chen, Perpendicular coercive force of thick CoFeB thin films grown on silicon substrate, Mater. Lett. 123 (2014) 221–223.

C. Zhang, M. Yamanouchi, H. Sato, S. Fukami, S. Ikeda, F. Matsukura, and H. Ohno, Magnetization reversal induced by in-plane current in Ta/CoFeB/MgO structures with perpendicular magnetic easy axis, J. Appl. Phys. 115 (2014) 17C714.

C.D. Fuerst and E.G. Brewer, Diffusion alloyed additives in die upset Nd-Fe-B magnets, J. Appl. Phys. 69(8) (1991) 5826-5828.

F. Bolzoni, F. Leccabue, O. Moze, L. Pareti, M. Solzi, Magnetocrystalline anisotropy of Ni and Mn substituted Nd2Fe14B compounds, J. Magn. Magn. Mater. 67(3) (1987) 373-377.

A.S. Kim and F.E. Camp, High performance NdFeB magnets (Invited), J. Appl. Phys. 79(8) (1996) 5035-5039.

X’Pert HighScore Plus, PANalytical B.V. Almelo, the Netherlands, Version: 2.2b (2.2.2), 2006.

H. Putz and K. Brandenburg, Pearson's crystal data, crystal structure database for inorganic compounds, CD-ROM Software Version 1.3.

U. Hartmann, Magnetic force microscopy: Some remarks from the micromagnetic point of view, J. Appl. Phys. 64 (1988) 1561-1564.

D. Rugar, H.J. Mamin, P. Guethner, S.E. Lambert, J.E. Stern, I. McFadyen and T. Yogi, Magnetic force microscopy: General principles and application to longitudinal recording media, J. Appl. Phys. 68(3) (1990) 1169-1183.

R.D. Gomez, E.R. Bruke, I.D. Mayergoyz, Magnetic imaging in the presence of external fields: Technique and applications (invited), J. Appl. Phys. 79(8) (1996) 6441-6446.

X.A. Lin, C.J. Wei, T.L. Niu, W.F. Lin, Y. Zheng and H.B. Shan, Magnetic force microscopy study of alternate sputtered (001) oriented L10 phase FePt films, Chin. Phys. Lett. 24(1) (2007) 222-225.

Nanoscope Analysis, Bruker. Billerica, USA, Version: 1.4, 2011.

I. Manke, N. Kardjilov, R. Schäfer, A. Hilger, M. Strobl, M. Dawson, C. Grünzweig, G. Behr, M. Hentschel, C. David, A. Kupsch, A. Lange and J. Banhart, Three-dimensional imaging of magnetic domains, Nat. Commun. 1 (2010) 125.

T. Wang, and M. Medraj, Intrinsic magnetic properties of Ce2(Fe, Co)14B and modifications by Ni and Cu, J. Magn. Magn. Mater. to be submitted.

I. Ohnuma, H. Enoki, O. Ikeda, R. Kainuma, H. Ohtani, B. Sundman and K. Ishida, Phase equilibria in the Fe-Co binary system, Acta Mater. 50 (2002) 379-393.

F. Sánchez-De Jesús, A.M. Bolarín-Miró, C.A. Cortés Escobedo, G. Torres- Villaseñor, and P. Vera-Serna, Structural analysis and magnetic properties of FeCo alloys obtained by mechanical alloying, J. Metall. 2016 (2016) 8347063.

S. Hirosawa, Y. Matsuura, H. Yamamoto, S. Fujimura, M. Sagawa and H. Yamauchi, Single crystal measurements of anisotropy constants of R2Fe14B (R=Y, Ce, Pr, Nd, Gd, Tb, Dy and Ho), Jpn. J. Appl. Phys. 24(10) (1985) L803-L805.

N. León-Brito, E.D. Bauer, F. Ronning, J.D. Thompson, and R. Movshovich, Magnetic microstructure and magnetic properties of uniaxial itinerant ferromagnet Fe3GeTe2, J. Appl. Phys. 120 (2016) 080903-080908.

W. Szmaja, Developments in the imaging of magnetic domains, Adv. Imag. Elect. Phys. 141 (2006) 175-256.

M.A. Al-Khafaji, W.M. Rainforth, M.R.J. Gibbs, J.E.L. Bishop, and H.A. Davies, The effect of tip type and scan height on magnetic domain images obtained by MFM, IEEE Trans. Magn. 32(5) (1996) 4138–4140.

M.M. Yazid, S.H. Olsen and G.J. Atkinson, MFM study of a sintered Nd-Fe-B magnet: Analyzing domain structure and measuring defect size in 3D view, IEEE Trans. Magn. 52(6) (2017) 1-10.

W. Szmaja, Investigations of the domain structure of anisotropic sintered Nd-Fe- B-based permanent magnets, J. Magn. Magn. Mater. 301 (2006) 546-561.

A.R. Miedema, F.R. de Boer and R. Boom, Model predictions for the enthalpy of formation of transition metal alloys, Calphad 1 (1977) 341-359.

M. Shimizu, J. Inoue and S. Nakagawa, Electronic structure and magnetic properties of Y-Ni intermetallic compounds, J. Phys. F: Met. Phys. 14 (1984) 2673-2687.

R. Bodenberger and A. Hubert, Zur bestimmung der blochwandenergie von einachsigen ferromagneten, Phys. Status Solidi A. 44(1) (1977) K7–K11.

J.F. Herbst, R2Fe14B materials: Intrinsic properties and technological aspects, Rev. Mod. Phys. 63 (1991) 819-898.
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top