Sierpinska, Anna and Beddard, Carol
(2020)
*A History of the Master in the Teaching of Mathematics (MTM) Program 1967 – 2018.*
Project Report.
Concordia University, Montreal.
(Unpublished)

Preview |
Text (Pre-print) (application/pdf)
3MBA_history_of_MTM_1967-2018-Sierpinska-Beddard-Cor.01.11.2020.pdf - Draft Version Available under License Spectrum Terms of Access. |

## Abstract

The MTM – Master in the Teaching of Mathematics – program has been the oldest graduate program in the Department of Mathematics and Statistics of Concordia University, established in 1967, when Concordia was still the Sir George Williams University. Very quickly, however, the Department developed a Master of Science/Master of Arts in Mathematics program and, later, a PhD program in Mathematics. MTM survived about 50 years, until 2016 when admissions to the program were suspended, or until 2019 when the last MTM student graduated.

In this document, we describe the program, its mission, degree requirements and courses. We present the context of the program’s creation in 1967 and the reasons for its suspension 50 years later.

We present also the people – faculty and students – who made the program what it was: a lively space for critical reflection on mathematics education research and practice, always open to trying novel approaches to teaching mathematics.

The tradition of critical reflection and trying different approaches to teaching mathematics has a chance to survive in the department after the suspension of the MTM program; MSc/MA students have the option of doing their research in the area of mathematics education.

The purpose of writing this historical piece is to keep the memory of the MTM program at Concordia alive, and to create an easily accessible reference for graduates of the program when they apply for jobs or further graduate studies.

The document has been written by the last director of the MTM program, Anna Sierpinska, with editorial help of her former student, Carol Beddard, an MTM 2012 graduate.

Divisions: | Concordia University > Faculty of Arts and Science > Mathematics and Statistics |
---|---|

Item Type: | Monograph (Project Report) |

Authors: | Sierpinska, Anna and Beddard, Carol |

Institution: | Concordia University |

Date: | 2020 |

Keywords: | Master in the Teaching of Mathematics, MTM, Teaching Mathematics, History of Mathematics Education, Mathematics Education, Graduate Studies |

ID Code: | 987308 |

Deposited By: | ANNA SIERPINSKA-JANKOWSKA |

Deposited On: | 01 Sep 2020 13:38 |

Last Modified: | 03 Nov 2020 03:38 |

## References:

Abelson, H., & diSessa, A. (1981). Turtle geometry. The computer as medium for exploring mathematics. Cambridge, Mass: M.I.T. Press. Retrieved from https://mitpress.mit.edu/books/turtle-geometryAnglin, W. S. (1997). The philosophy of mathematics: The invisible art. Lewiston/Queenston/Lampeter: The Edwin Mellen Press.

Beddard, C. (2012). Motivating adult students taking a basic algebra course in a university setting. Montreal: Concordia University. Retrieved from https://spectrum.library.concordia.ca/973724/

Bednarz, N., Kieran, C., & Lee, L. (1996). Approaches to algebra: Perspectives on research and teaching. Dortrecht: Kluwer.

Bergeron, J. (1994). In memoriam Nicolas Herscovics, 1935-1994. Educational Studies in Mathematics, 26(2), v-vi.

Black, B. (1997, February 13). A summary of 'Our Immediate Future'. Concordia's Thursday Report, 4. Retrieved from https://www.concordia.ca/content/dam/concordia/offices/archives/docs/concordia-thursday-report/1996-97/Thursday-Report-1997-February-13.pdf

Bobos, G., & Sierpinska, A. (2017). Measurement approach to teaching fractions: A design experiment in a pre-service course for elementary teachers. International Journal for Mathematics Teaching and Learning, 18(2), 203-239. Retrieved July 3, 2017, from http://www.cimt.org.uk/ijmtl/index.php/IJMTL/article/view/65/34

Bobos-Kristof, G. (2007). The development of the modern integration theory from Cauchy to Lebesgue : a historical and epistemological study with didactical implications. Masters thesis. Montreal: Concordia University. Retrieved from https://spectrum.library.concordia.ca/975476/

Bobos-Kristof, G. (2015). Teaching fractions through a Measurement Approach to prospective elementary teachers: A design experiment in a Math Methods course. A PhD Thesis. Montreal : Concordia University.

Brousseau, G. (1997). Theory of didactical situations in mathematics. Dortrecht: Kluwer.

Chevallard, Y. (1992). Fundamental concepts in didactics: perspectives provided by an anthropological approach. In R. Douady, & A. Mercier, Research in Didactique of Mathematics (pp. 131-161). Grenoble: La Pensée Sauvage.

Chevallard, Y. (1999). L'analyse des pratiques enseignantes en théorie anthropologique du didactique. Recherches en Didactique des Mathématiques 19(2), 221-266.

Clarke, D. (1977). Decades of decisions. Sir George Williams University 1952-3 to 1972-73. Montreal: Concordia University.

Dyrszlag, Z. (1978). O poziomach i kontroli rozumienia pojęć matematycznych w procesie dydaktycznym. Studia i Monografie Wyższej Szkoły Pedagogicznej w Opolu, Seria B, 65.

Freiman, V. (2003). Identification and fostering of mathematically gifted children at the elementary school. Master's thesis. Montreal: Concordia University. Retrieved from https://spectrum.library.concordia.ca/2099/

Giovanniello, S. (2017). What algebra do Calculus students need to know? Montreal: Concordia University. Retrieved from https://spectrum.library.concordia.ca/982929/

Haddad, M. (1999). Students' difficulties in the learning of linear algebra: A personal experience. Montreal: Concordia University. Retrieved from https://spectrum.library.concordia.ca/view/creators/Haddad=3AMichael=3A=3A.html

Hardgrove, C. (1963). CUPM Report on the training of teachers of elementary school mathematics. American Mathematical Monthly, 70(8), 870-877.

Herscovics, N., & Linchevski, L. (1994). A cognitive gap between arithmetic and algebra. Educational Studies in Mathematics, 27(1), 59-78.

Hillel, J. (1983). A task-oriented method of protocol-analysis. Proceedings of the Seventh Conference of the International Group for the Psychogy of Mathematics Education (pp. 380-385). Shoresh, Israel: PME.

Hillel, J. (2018). 'Elder talk' - A revisionist version. Canadian Mathematics Education Study Group/Groupe canadien d'etude en didactique des mathematiques. Proceesdings/Actes 2017 Annual Meeting/Rencontre annuelle, McGill University, Montreal, QC, Jone 2-5, 2017 (pp. 39-43). Montreal, QC: CMESG/GCEDM. Retrieved from http://www.cmesg.org/wp-content/uploads/2018/05/CMESG-2017.pdf

Hillel, J., & Wheeler, D. (1982). Problem solving protocols: a task-oriented method of analysis. Montreal: Concordia University.

Klakla, M., Klakla, M., Nawrocki, J., & Nowecki, B. (1991). Pewna koncepcja rozumienia pojęć matematycznych i jej werifikacja na przykladzie kwantyfikatorów. Dydakyka Matematyki, 13, 181-223.

Knipping, C. (2003). Beweisprozesse in der Unterrichtspraxis - Vergleichende Analysen von Mathematikunterricht in Deutschland und Frankereich [Proving processes in teaching practices - Comparative analysis of mathematics teaching in Germany and France]. Hildesheim: Franzbecker Verlag.

Laborde, C. (1985). Quelques problèmes d'enseignement de la géométrie dans l'enseigement obligatoire. For the Learning of Mathematics, 5(3), 27-34.

Laborde, C. (2001). David Wheeler: originalité, simplicité et humour discret. For the Learning of Mathematics, 21(2), 17-18.

Lee, L. (2001). Speaking of David Wheeler. For the Learning of Mathematics, 21(2), 54-58.

Lee, L., & Wheeler, D. (1989). The arithmetic connection. Educational Studies in Mathematics, 20(1), 41-54.

Masters, R. (2000). The effect of students' physics background on their understanding of linear algebra. Montreal: Concordia University. Retrieved from https://spectrum.library.concordia.ca/view/creators/Masters=3ARichard=3A=3A.html

Meroz, E. (1997). Mathematical, philosophical, religious and spotaneous students' explanations of the paradox of Achilles and the tortoise. Montreal: Concordia University. Retrieved from https://spectrum.library.concordia.ca/382/

Moon, B. (1986). The 'New Maths' curriculum controversy: An international story. London: Falmer Press.

Pearce, D. (2015). Mathematics for engineers and engineer's mathematics. Master's thesis . Montreal: Concordia University.

Pelczer, I. (2017). A praxeological model of future elementary teachers' envisioned practice of teaching geometric transformations. Montreal: Concordia University.

Pluvinage, F. (2002, December). In Memoriam - Georges Glaeser (1918-2002). Bulletin of the Intenational Commission on Mathematical Instructiion, 51, pp. 63-66. Retrieved from https://www.mathunion.org/fileadmin/ICMI/files/Publications/ICMI_bulletin/51.pdf

Ramsey, A. (1997, February 13). Analytical skills and relevance take on more importance. Mathematics an statistics revises curriculum. Concordia's Thursday Report. Retrieved from https://www.concordia.ca/content/dam/concordia/offices/archives/docs/concordia-thursday-report/1996-97/Thursday-Report-1997-February-13.pdf

Ratel, J.-L., & Verrault-Julien, P. (2006). Le financement des universités québécoises, enjeux et défis. Quebec: CADEUL.

Reid, D. (1992). Mathematical induction: an epistemological study with consequences for teaching. Montreal: Concordia University.

Reid, D., & Knipping, C. (2010). Proof in mathematics education: research, learning and teaching. Rotterdam: Sense Publishers.

Sierpinska, A. (1988a). A cultural approach to epistemological obstacles. In N. Bednarz, Résumés des présentations au Colloque International "Obstacles épistémologiques et conflits cognitifs" (pp. 73-74). Montreal: C.I.R.A.D.E.

Sierpinska, A. (1988b). Conséquences sur l'intervention pédagogique des notions d'obstacle et conflit. In N. Bednarz, Résumés des présentations au Colloque International "Obstacles épistémologiques et conflits cognitifs" (pp. 59-64). Montreal: C.I.R.A.D.E.

Sierpinska, A. (1989). Sur un programme de recherche lié à la notion d'obstacle épistémologique. In N. Bednarz, & C. Garnier, Construction des savoirs. Obstacles et conflits (pp. 130-147). Montréal: Agence d'ARC.

Sierpinska, A. (1994). Understanding in mathematics. London: Falmer.

Sierpinska, A. (2016). Inquiry-based learning aproaches and the development of theoretical thinking in the mathematics education of future elementary school teachers. In B. Maj-Tatsis, M. Pytlak, & E. Swoboda, Inquiry-based mathematical education (pp. 23-57). Rzeszow: University of Rzeszow.

Sierpinska, A. (2019). Materials for teaching a course on research in mathematics education about students' difficulties in mathematics. Retrieved from Academia.edu: https://www.academia.edu/39941494/Materials_for_teaching_a_course_on_research_in_mathematics_education_about_students_difficulties_in_mathematics

Sierpinska, A., & Gontijo-Lauar, V. (2019). How I taught the course MAST 217 Introduction to Mathematical Thinking at Concordia University in Montreal in the years 2016-18. Lecture Notes, Concordia University, Mathematics and Statistics. Retrieved from https://concordia.academia.edu/AnnaSierpinska/Course-Notes

Sierpinska, A., Bobos, G., & Knipping, C. (2007). A study of university students' frustration in pre-university level, prerequisite mathematics courses: emotions, positions and perception of achievement. Didactica Mathematicae, 30, 47-76. Retrieved September 30, 2013, from http://wydawnictwa.ptm.org.pl/index.php/didactica-mathematicae/article/view/7/7

Sierpinska, A., Bobos, G., & Knipping, C. (2008). Sources of students' frustration in pre-university level, prerequisite mathematics courses. Instructional Science, 36(4), 289-320.

Sierpinska, A., Defence, A., Khatcherian, T., & Saldanha, L. (1997). A propos de trois modes de raisonnement en algèbre linéaire. In J.-L. Dorier, L'Enseignement de l'Algèbre Linéaire en question (pp. 249-268). Grenoble: La Pensée Sauvage.

Sierpinska, A., Dreyfus, T., & Hillel, J. (1999). Evaluation of a teaching design in Linear Algebra: The case of linear transformations. Recherches en Didactique des Mathématiques, 19(1), 7-40.

Sierpinska, A., Nnadozie, A., & Oktaç, A. (2002). A study of relationships between theoretical thinking and high achievement in linear algebra. Retrieved September 17, 2017, from Anna Sierpinska: https://concordia.academia.edu/AnnaSierpinska/Drafts

Simmons, G. (1972). Differential equations with applications and historical notes. New Delhi: TATA McGraw-Hill Publishing Company Ltd.

Singh, J. (1959). Great ideas of modern mathematics: their nature and use. New York: Dover Publications.

Speiser, B., & Walter, C. (2004). Remembering Stanley Erlwanger. For the Learning of Mathematics, 24(3), 33-39.

Tall, D. (1977). Review of "Mathematics as an Educational Task" by Hans Freudenthal. Instructional Science, 6(2), 187-198.

Tall, D., & Vinner, S. (1981). Concept images and concept definitions in mathematics with particular reference to limits and continuity. Educational Studies in Mathematics, 12(2), 151-169.

The Mathematical Association of America. (1960). Recommendations of the Mathematical Association of America for the training of teachers of mathematics. The Mathematics Teacher, 53(8), 632-638, 643.

Tziritas, M. (2011). APOS theory as a framework to study the conceptual stages of related rates problems. Master's Thesis. Montreal: Concordia University. Retrieved from https://spectrum.library.concordia.ca/36027/

Vinner, S. (1997). The pseudo-conceptual and the pseudo-analytical thought processes in mathematics learning. Educational Studies in Mathematics, 34(2), 97-129.

Watson, A., & Mason, J. (1998). Questions and prompts for mathematical thinking. London, UK: Association of Teachers of Mathematics.

Repository Staff Only: item control page