Login | Register

Fracture Mechanics Fatigue Life Assessment of Welded Joints Under Ultrasonic Impact Treatment


Fracture Mechanics Fatigue Life Assessment of Welded Joints Under Ultrasonic Impact Treatment

Sarafrazi, Mehrdad (2020) Fracture Mechanics Fatigue Life Assessment of Welded Joints Under Ultrasonic Impact Treatment. Masters thesis, Concordia University.

[thumbnail of Sarafrazi_MASC_S2021.pdf]
Text (application/pdf)
Sarafrazi_MASC_S2021.pdf - Accepted Version


Welding joints are the most used joining method to fabricate engineering structures due to their low cost, structural strength, and geometric flexibility. Irregular geometries, micro cracks, defects, high stress concentration and tensile residual stresses are some of the results of a highly metallurgical process considered as welding. Thus, an important subject of growing concern in product design is to consider some of the critical factors caused from the weld process including high tensile residual stresses and stress concentrations to properly evaluate the fatigue life of the structures. Lightweight design of welded steel and aluminum structures in cyclic service requires the use of post-treatment approaches like Ultrasonic Impact Treatment (UIT). In this thesis, an evaluation of fatigue tests carried out recently on welded specimens exposed to UIT under the effect of the constant amplitude (CA) loading on the fatigue strength is described.
First, the effects of the various fatigue damage parameters on the as-welded (AW) condition and the impact treated welds are described in the literature review. Furthermore, fatigue test data have been taken from literature for both conditions under CA loading for several different stress ranges for each material. Following the tests, residual stress distributions below the weld toe surface have been specified by x-ray diffraction of untested specimens. More importantly, the test data obtained from the literature were analyzed through out the thesis and were used to define input parameter values for fracture mechanics analyses of the welded joint specimens. After that, the crack growth assessment of welded structures is provided. For comparison purposes, both Walker and Forman fatigue crack growth models are thoroughly reviewed and their advantages as invaluable tools for predicting the effects of UIT on fatigue performance for welded joints are examined. Subsequently, the benefit of the models in predicting fatigue crack growth behaviors for nine distinct materials are examined and the effects of the various material strength parameters on the impact treatment performance are assessed. Then, fatigue crack propagation life of the materials is displayed. In the end, the crack shape evolution of the materials is depicted. In conclusion, the outcomes of this investigation accompanied by proposed future work are mentioned.

Divisions:Concordia University > Gina Cody School of Engineering and Computer Science > Mechanical, Industrial and Aerospace Engineering
Item Type:Thesis (Masters)
Authors:Sarafrazi, Mehrdad
Institution:Concordia University
Degree Name:M.A. Sc.
Program:Mechanical Engineering
Date:10 December 2020
Thesis Supervisor(s):Ince, Ayhan
Keywords:Fatigue – Failure – Fracture Mechanics Methods and Analyses – Welded Joints – As Welded (AW) Condition – Weld Imperfections – Post Weld Treatment Method – Ultrasonic Impact Treatment (UIT) Method – Residual Stresses – Stress Distributions – Stress Concentration – Stress Intensity – Fracture Toughness – Threshold Stress Intensity – Fatigue Loading – Crack Growth – Crack Initiation and Propagation – Local Stresses – Fatigue Strength – Fatigue Crack Growth Behavior – Crack Shape Evolution
ID Code:987718
Deposited By: Mehrdad Sarafrazi
Deposited On:23 Jun 2021 16:35
Last Modified:23 Jun 2021 16:35


[1] Alam, M. M., Barsoum, Z., Jonsén, P., Kaplan, A. F. H., & Häggblad, H. Å. (2010). The influence of surface geometry and topography on the fatigue cracking behaviour of laser hybrid welded eccentric fillet joints. Applied Surface Science, 256(6), 1936–1945. https://doi.org/10.1016/j.apsusc.2009.10.041
[2] AL-Emarani, M., & Åkesson, B. (2013). Steel Structures [Thesis]. Chalmers University of Technology.
[3] Al-Emrani, M., & Åkesson, B. (2013). Steel structures: Course literature–VSM 191 [Course Literature].
[4] Ashcroft, I. A. (2011). Fatigue Load Conditions. In L. F. M. da Silva, A. Öchsner, & R. D. Adams (Eds.), Handbook of Adhesion Technology (pp. 845–874). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-01169-6_33
[5] ASTM E2860. (2012). Test Method for Residual Stress Measurement by X-Ray Diffraction for Bearing Steels. ASTM International. https://doi.org/10.1520/E2860-12
[6] ASTM, S. E. (1823). Standard terminology relating to fatigue and fracture testing-Annual Book of ASTM Standards. (Vol. 1–96). American Society for Testing and Materials, West Conshohocken.
[7] BANNANTINE, J., COMER, J., & Handrock, J. (1990). Fundamentals of metal fatigue analysis (Vol. 1–286). Englewood Cliffs, NJ, Prentice Hall.
[8] Barsoum, Z., & Jonsson, B. (2011). Influence of weld quality on the fatigue strength in seam welds. Engineering Failure Analysis, 18(3), 971–979. https://doi.org/10.1016/j.engfailanal.2010.12.001
[9] Bhat, S., & Patibandla, R. (2011). Metal Fatigue and Basic Theoretical Models: A Review. In Alloy Steel-Properties and Use. IntechOpen.
[10] Bhaumik, S. K., Sujata, M., & Venkataswamy, M. A. (2008). Fatigue failure of aircraft components. Engineering Failure Analysis, 15(6), 675–694. https://doi.org/10.1016/j.engfailanal.2007.10.001
[11] Broek, D. (1986). Elementary engineering fracture mechanics. Springer Netherlands. https://doi.org/10.1007/978-94-009-4333-9
[12] BS EN 15305. (2008). Non-destructive Testing—Test Method for Residual Stress analysis by X-ray Diffraction. British Standards Institution.
[13] Bueckner, H. F. (1970). NOVEL PRINCIPLE FOR THE COMPUTATION OF STRESS INTENSITY FACTORS. Zeitschrift Fuer Angewandte Mathematik & Mechanik, 50(9), 529–546.
[14] Caccese, V., Blomquist, P. A., Berube, K. A., Webber, S. R., & Orozco, N. J. (2006). Effect of weld geometric profile on fatigue life of cruciform welds made by laser/GMAW processes. Marine Structures, 19(1), 1–22. https://doi.org/10.1016/j.marstruc.2006.07.002
[15] Castillo-Morales, M., & Salas-Zamarripa, A. (2010). The Effects of UIT in the Fatigue Life of Al 2024-T3. Key Engineering Materials, 449, 15–22. https://doi.org/10.4028/www.scientific.net/KEM.449.15
[16] Chattopadhyay, A., Glinka, G., El-Zein, M., Qian, J., & Formas, R. (2011). Stress Analysis and Fatigue of welded structures. Welding in the World, 55(7–8), 2–21. https://doi.org/10.1007/BF03321303
[17] Cui, C., Zhang, Q., Bao, Y., Kang, J., & Bu, Y. (2018). Fatigue performance and evaluation of welded joints in steel truss bridges. Journal of Constructional Steel Research, 148, 450–456. https://doi.org/10.1016/j.jcsr.2018.06.014
[18] Deng, D., & Murakawa, H. (2006). Numerical simulation of temperature field and residual stress in multi-pass welds in stainless steel pipe and comparison with experimental measurements. Computational Materials Science, 37(3), 269–277. https://doi.org/10.1016/j.commatsci.2005.07.007
[19] Dowling, N. E. (2013). Mechanical behavior of materials: Engineering methods for deformation, fracture, and fatigue (4th ed). Pearson.
[20] Dowling, N. E., Siva Prasad, K., & Narayanasamy, R. (2013). Mechanical behavior of materials: Engineering methods for deformation, fracture, and fatigue (4. ed., internat. ed). Pearson.
[21] Dürr, A. (2007). Zur Ermüdungsfestigkeit von Schweißkonstruktionen aus höherfesten Baustählen bei Anwendung von UIT-Nachbehandlung. https://doi.org/10.18419/OPUS-265
[22] EUROPE TECHNOLOGIES SONATS. (2020). Innovative Impact Surface Treatment Solutions. SONATS. https://sonats-et.com/en/
[23] Farajian, M., Barsoum, Z., Weich, I., & Nitschke-Pagel, T. (2012). A literature survey on residual stress related fatigue strength improvement techniques for welded components and structures. (IIW Doc XIII-WG6-008-12). International Institute of Welding. https://www.researchgate.net/publication/293756150_A_Literature_Survey_on_Residual_Stress_Related_Fatigue_Strength_Improvement_Techniques_for_Welded_Components_and_Structures
[24] Farajian, M., Nitschke-Pagel, T., & Lieurade, H. P. (2012). Farajian, M., Nitschke-Pagel, T., & Lieurade, H. P. (2012). Shot peening as a tool for fatigue strength improvement of welds: A review. (IIW Doc XIII-WG6-009-12). International Institute of Welding. https://www.researchgate.net/publication/293756131_Shot_Peening_as_a_tool_for_fatigue_strength_improvement_of_welds_a_review
[25] Farajian-Sohi, M., Nitschke-Pagel, T., & Dilger, K. (2010). Residual Stress Relaxation of Quasi-Statically and Cyclically-Loaded Steel Welds. Welding in the World, 54(1–2), R49–R60. https://doi.org/10.1007/BF03263484
[26] Fisher, J. W., Statnikov, E. S., & Tehini, L. (2001). Fatigue strength enhancement by means of weld design change and the application of ultrasonic impact treatment. In Proc. of Intl. Symp. on Steel Bridges, Chicago.
[27] Fong, & J., T. (1979). Fatigue mechanisms. ASTM International.
[28] Forman, R. G., Kearney, V. E., & Engle, R. M. (1967). Numerical Analysis of Crack Propagation in Cyclic-Loaded Structures. Journal of Basic Engineering, 89(3), 459–463. https://doi.org/10.1115/1.3609637
[29] Fricke, W. (2012). IIW recommendations for the fatigue assessment of welded structures by notch stress analysis. WP, Woodhead Publ.
[30] Fricke, W. (2013). IIW guideline for the assessment of weld root fatigue. Welding in the World, 57(6), 753–791. https://doi.org/10.1007/s40194-013-0066-y
[31] Frost, N. E., Marsh, K. J., & Pook, L. P. (1974). Metal fatigue. Clarendon Press.
[32] Ghahremani, K. (2015). Fatigue assessment of repaired highway bridge welds using local approaches. Doctoral Thesis [Doctoral Thesis]. University of Waterloo.
[33] Ghahremani, Kasra, Ranjan, R., Walbridge, S., & Ince, A. (2015). Fatigue Strength Improvement of Aluminum and High Strength Steel Welded Structures using High Frequency Mechanical Impact Treatment. Procedia Engineering, 133, 465–476. https://doi.org/10.1016/j.proeng.2015.12.616
[34] Ghahremani, Kasra, Walbridge, S., & Topper, T. (2015). High cycle fatigue behaviour of impact treated welds under variable amplitude loading conditions. International Journal of Fatigue, 81, 128–142. https://doi.org/10.1016/j.ijfatigue.2015.07.022
[35] Glinka, G., & Shen, G. (1991). Universal features of weight functions for cracks in mode I. Engineering Fracture Mechanics, 40(6), 1135–1146. https://doi.org/10.1016/0013-7944(91)90177-3
[36] Goldak, J., Chakravarti, A., & Bibby, M. (1984). A new finite element model for welding heat sources. Metallurgical Transactions B, 15(2), 299–305. https://doi.org/10.1007/BF02667333
[37] Griffith, A. A. (1921). Philosophical transactions of the royal society of london. Series A, containing papers of a mathematical or physical character. 221, 163–198.
[38] Gurney, T. R., & Saunders, H. (1981). Fatigue of Welded Structures (2nd Edition). Journal of Engineering Materials and Technology, 103(2), 185–185. https://doi.org/10.1115/1.3224993
[39] Haagensen, P. J. (2011). Fatigue strength improvement methods. In Fracture and Fatigue of Welded Joints and Structures (pp. 297–329). Elsevier. https://doi.org/10.1533/9780857092502.2.297
[40] Haagensen, P., Statnikov, E. S., & López-Martínez, L. (1998). Introductory fatigue tests on welded joints in high strength steel and aluminium improved by various methods including ultrasonic impact treatment ( UIT ). IIW, 13, 1748–1798.
[41] Hadley, I. (2018). BS 7910:2013 in brief. International Journal of Pressure Vessels and Piping, 165, 263–269. https://doi.org/10.1016/j.ijpvp.2018.07.010
[42] Harati, E. (2015). Fatigue strength of welds in 800 MPa yield strength steels: Effects of weld toe geometry and residual stress. University West.
[43] Harrison, J. D. (1970). ANALYSIS OF DATA ON NON-PROPAGATING FATIGUE CRACKS ON A FRACTURE MECHANICS BASIS. Metal Constr. Brit. Weld. J. 2: 93-8(Mar 1970), 2(3), 24–26.
[44] Hellan, K. (1984). Introduction to fracture mechanics. McGraw-Hill.
[45] Hobbacher, A. (2012). Update of the fracture mechanics chapters of the IIW fatigue design recommendations. International Institute of Welding; IIW-document XIII-2370r1-11/XV-1376r1-11.
[46] Hobbacher, A. F. (2016). Recommendations for Fatigue Design of Welded Joints and Components (2nd ed. 2016). Springer International Publishing : Imprint: Springer. https://doi.org/10.1007/978-3-319-23757-2
[47] Irwin, G. R. (1948). Fracturing of metals. ASM, Cleveland, 147(19–9).
[48] Irwin, G. R. (1957). Analysis of stresses and strains near the end of a crack transversing a plate. Trans. ASME, Ser. E, J. Appl. Mech., 24, 361–364.
[49] James, M. N., Hughes, D. J., Chen, Z., Lombard, H., Hattingh, D. G., Asquith, D., Yates, J. R., & Webster, P. J. (2007). Residual stresses and fatigue performance. Engineering Failure Analysis, 14(2), 384–395. https://doi.org/10.1016/j.engfailanal.2006.02.011
[50] Jonsson, B., Samuelsson, J., & Marquis, G. B. (2011). Development of Weld Quality Criteria Based on Fatigue Performance. Welding in the World, 55(11–12), 79–88. https://doi.org/10.1007/BF03321545
[51] Joshua, H. M. (2014). Fatigue Crack Growth Analysis with Finite Element Methods and a Monte Carlo Simulation [Virginia Polytechnic Institute and State University]. https://vtechworks.lib.vt.edu/bitstream/handle/10919/48432/Melson_JH_T_2014.pdf?sequence=1&isAllowed=y
[52] Josi, G., & Grondin, G. Y. (2010). Reliability-based management of fatigue failures [Doctoral Thesis]. University of Alberta.
[53] Khurshid, M., Barsoum, Z., & Marquis, G. (2014). Behavior of Compressive Residual Stresses in High Strength Steel Welds Induced by High Frequency Mechanical Impact Treatment. Journal of Pressure Vessel Technology, 136(4), 041404. https://doi.org/10.1115/1.4026651
[54] Kirkhope, K. J., Bell, R., Caron, L., Basu, R. I., & Ma, K.-T. (1999a). Weld detail fatigue life improvement techniques. Part 1: Review. Marine Structures, 12(6), 447–474. https://doi.org/10.1016/S0951-8339(99)00013-1
[55] Kirkhope, K. J., Bell, R., Caron, L., Basu, R. I., & Ma, K.-T. (1999b). Weld detail fatigue life improvement techniques. Part 2: Application to ship structures. Marine Structures, 12(7–8), 477–496. https://doi.org/10.1016/S0951-8339(99)00031-3
[56] Kudryavtsev, Y., Mikheev, P., & Korshun, V. (1995). Influence of plastic deformation and residual stresses, created by ultrasonic impact treatment, on the fatigue strength of welded joints. Paton Welding Journal, 12, 3–7.
[57] Kudryavtsev, Yuri, & Kleiman, J. (2013). Fatigue Improvement of Welded Elements and Structures by Ultrasonic Peening. Volume 6A: Materials and Fabrication, V06AT06A060. https://doi.org/10.1115/PVP2013-97185
[58] Kuhlmann, U., Dürr, A., Bergmann, J., Thumser, R., & Forschungsvereinigung Stahlanwendung (Eds.). (2006). Effizienter Stahlbau aus höherfesten Stählen unter Ermüdungsbeanspruchung =: Fatigue strength improvement for welded high strength steel connections due to the application of post-weld treatment methods. Verl.- und Vertriebsges.
[59] Kuhlmann, Ulrike, Bergmann, J., Dürr, A., Thumser, R., Günther, H.-P., & Gerth, U. (2005). Erhöhung der Ermüdungsfestigkeit von geschweißten höherfesten Baustählen durch Anwendung von Nachbehandlungsverfahren. Stahlbau, 74(5), 358–365. https://doi.org/10.1002/stab.200590066
[60] Lampman, S. R., & DiMatteo, N. D. (1996). ASM handbook: Volume 19, fatigue and fracture. (Vol. 1–19). ASM International.
[61] Lassen, T., & Recho, N. (2006). Fatigue life analyses of welded structures. http://www.books24x7.com/marc.asp?bookid=13832
[62] Lee, C.-H., Chang, K.-H., Jang, G.-C., & Lee, C.-Y. (2009). Effect of weld geometry on the fatigue life of non-load-carrying fillet welded cruciform joints. Engineering Failure Analysis, 16(3), 849–855. https://doi.org/10.1016/j.engfailanal.2008.07.004
[63] Leitner, M., Barsoum, Z., & Schäfers, F. (2016). Crack propagation analysis and rehabilitation by HFMI of pre-fatigued welded structures. Welding in the World, 60(3), 581–592. https://doi.org/10.1007/s40194-016-0316-x
[64] Leitner, M., Gerstbrein, S., Ottersböck, M. J., & Stoschka, M. (2015). Fatigue Strength of HFMI-treated High-strength Steel Joints under Constant and Variable Amplitude Block Loading. Procedia Engineering, 101, 251–258. https://doi.org/10.1016/j.proeng.2015.02.036
[65] Leitner, M., Khurshid, M., & Barsoum, Z. (2017). Stability of high frequency mechanical impact (HFMI) post-treatment induced residual stress states under cyclic loading of welded steel joints. Engineering Structures, 143, 589–602. https://doi.org/10.1016/j.engstruct.2017.04.046
[66] Lihavainen, V.-M. (2006). A novel approach for assessing the fatigue strenght of ultrasonic impact treated welded structures. Lappeenrannan Teknillinen Yliopisto.
[67] Lotsberg, I., Fjeldstad, A., Helsem, M. R., & Oma, N. (2014). Fatigue life improvement of welded doubling plates by grinding and ultrasonic peening. Welding in the World, 58(6), 819–830. https://doi.org/10.1007/s40194-014-0161-8
[68] Maddox, S. J. (2002). Fatigue Strength of Welded Structures. Elsevier. https://doi.org/10.1016/C2013-0-17455-7
[69] Marquis, G. B., & Barsoum, Z. (2016). IIW Recommendations for the HFMI Treatment. Springer Singapore. https://doi.org/10.1007/978-981-10-2504-4
[70] Marquis, G. B., Mikkola, E., Yildirim, H. C., & Barsoum, Z. (2013). Fatigue strength improvement of steel structures by high-frequency mechanical impact: Proposed fatigue assessment guidelines. Welding in the World, 57(6), 803–822. https://doi.org/10.1007/s40194-013-0075-x
[71] Martinsferreira, J., & Mourabranco, C. (1989). Influence of the radius of curvature at the weld toe in the fatigue strength of fillet welded joints. International Journal of Fatigue, 11(1), 29–36. https://doi.org/10.1016/0142-1123(89)90044-3
[72] Mishchenko, A., Wu, L., da Silva, V. K., & Scotti, A. (2018). Analysis of residual stresses resulting from the surface preparation for X-ray diffraction measurement. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40(2), 94. https://doi.org/10.1007/s40430-018-1036-5
[73] Mosiello, A., & Kostakakis, K. (2013). The benefits of Post Weld Treatment for cost efficient and sustainable bridge design. Chalmers University of Technology.
[74] NDT Eduation Resource Center. (2014). NDT Eduation Resource Center. https://www.nde-ed.org/index_flash.htm
[75] Nieslony, A., Dsoki, C., Kaufmann, H., & Krug, P. (2008). New method for evaluation of the Manson–Coffin–Basquin and Ramberg–Osgood equations with respect to compatibility. International Journal of Fatigue, 30(10–11), 1967–1977. https://doi.org/10.1016/j.ijfatigue.2008.01.012
[76] Niu, X., & Glinka, G. (1987). The weld profile effect on stress intensity factors in weldments. International Journal of Fracture, 35(3), 20.
[77] Noroozi, A., Glinka, G., & Lambert, S. (2007). A study of the stress ratio effects on fatigue crack growth using the unified two-parameter fatigue crack growth driving force. International Journal of Fatigue, 29(9–11), 1616–1633. https://doi.org/10.1016/j.ijfatigue.2006.12.008
[78] Pang, H. (1993). Analysis of weld toe profiles and weld toe cracks. International Journal of Fatigue, 15(1), 31–36. https://doi.org/10.1016/0142-1123(93)90074-Z
[79] Paris, P., & Erdogan, F. (1963). A Critical Analysis of Crack Propagation Laws. Journal of Basic Engineering, 85(4), 528–533. https://doi.org/10.1115/1.3656900
[80] Paul, S. P. (1986). X-Ray Diffraction Residual Stress Techniques. In R. E. Whan (Ed.), Materials Characterization (pp. 380–392). ASM International. https://doi.org/10.31399/asm.hb.v10.a0001761
[81] Pearson, S. (1966). Fatigue Crack Propagation in Metals. Nature, 211(5053), 1077–1078. https://doi.org/10.1038/2111077a0
[82] Peeker, E. (1997). Extended numerical modeling of fatigue behavior. https://doi.org/10.5075/EPFL-THESIS-1617
[83] Radaj, D. (1995). Ermüdungsfestigkeit: Grundlagen für Leichtbau. Maschinen-und Stahlbau. SpringerVerlag.
[84] Radhi, H. E., & Barrans, S. (2010). FINITE ELEMENT ANALYSIS OF EFFECT OF WELD TOE RADIUS AND PLATE THICKNESS ON FATIGUE LIFE OF BUTT WELDED JOINT. 60–64. http://eprints.hud.ac.uk/id/eprint/9316
[85] Ranjan, R., Ghahremani, K., Walbridge, S., & Ince, A. (2016). Testing and fracture mechanics analysis of strength effects on the fatigue behavior of HFMI-treated welds. Welding in the World, 60(5), 987–999. https://doi.org/10.1007/s40194-016-0354-4
[86] Richard, H. A., & Sander, M. (2016). Fatigue Crack Growth (Vol. 227). Springer International Publishing. https://doi.org/10.1007/978-3-319-32534-7
[87] Ritchie, R. O. (1999). [No title found]. International Journal of Fracture, 100(1), 55–83. https://doi.org/10.1023/A:1018655917051
[88] Rodopoulos, C. A., Kermanidis, A. Th., Statnikov, E., Vityazev, V., & Korolkov, O. (2007). The Effect of Surface Engineering Treatments on the Fatigue Behavior of 2024-T351 Aluminum Alloy. Journal of Materials Engineering and Performance, 16(1), 30–34. https://doi.org/10.1007/s11665-006-9004-0
[89] Rossini, N. S., Dassisti, M., Benyounis, K. Y., & Olabi, A. G. (2012). Methods of measuring residual stresses in components. Materials & Design, 35, 572–588. https://doi.org/10.1016/j.matdes.2011.08.022
[90] Roy, S. (2003). Fatigue resistance of welded details enhanced by ultrasonic impact treatment (UIT). International Journal of Fatigue, 25(9–11), 1239–1247. https://doi.org/10.1016/S0142-1123(03)00151-8
[91] Roy, S., & Fisher, J. W. (2005). Enhancing fatigue strength by ultrasonic impact treatment. International Journal of Steel Structures. International Journal of Steel Structures, 5(3), 241–252.
[92] Schaumann, P., & Collmann, M. (2013). Influence of Weld Defects on the Fatigue Resistance of Thick Steel Plates. Procedia Engineering, 66, 62–72. https://doi.org/10.1016/j.proeng.2013.12.062
[93] Schijve, J. (2001). Fatigue of structures and materials. Kluwer Academic.
[94] Schijve, J. (2008). Fatigue of Structures and Materials. Springer Science & Business Media. https://doi.org/10.1007/0-306-48396-3
[95] Seto, A., Masuda, T., Machida, S., & Miki, C. (2000). Very low cycle fatigue properties of butt welded joints containing weld defects. Study of acceptable size of defects in girth welds of gas pipelines. Welding International, 14(1), 26–34. https://doi.org/10.1080/09507110009549134
[96] Shams-Hakimi, P. (2017). Performance of high-frequency mechanical impact treatment for bridge application [Doctoral dissertation, Department of Architecture and Civil Engineering, Chalmers University of Technology]. https://core.ac.uk/download/pdf/84870083.pdf
[97] Shams-Hakimi, Poja, Zamiri, F., Al-Emrani, M., & Barsoum, Z. (2018). Experimental study of transverse attachment joints with 40 and 60 mm thick main plates, improved by high-frequency mechanical impact treatment (HFMI). Engineering Structures, 155, 251–266. https://doi.org/10.1016/j.engstruct.2017.11.035
[98] Sharpe, W. N. (2008). Springer handbook of experimental solid mechanics. Springer.
[99] Shirahata, H., Miki, C., Yamaguchi, R., Kinoshita, K., & Yaginuma, Y. (2014). Fatigue crack detection by the use of ultrasonic echo height change with crack tip opening. Welding in the World, 58(5), 681–690. https://doi.org/10.1007/s40194-014-0149-4
[100] Sidhom, N., Laamouri, A., Fathallah, R., Braham, C., & Lieurade, H. (2005). Fatigue strength improvement of 5083 H11 Al-alloy T-welded joints by shot peening: Experimental characterization and predictive approach. International Journal of Fatigue, 27(7), 729–745. https://doi.org/10.1016/j.ijfatigue.2005.02.001
[101] Sonsino, C. (2009). Effect of residual stresses on the fatigue behaviour of welded joints depending on loading conditions and weld geometry. International Journal of Fatigue, 31(1), 88–101. https://doi.org/10.1016/j.ijfatigue.2008.02.015
[102] Statnikov, A. S. (2000). Applications of operational ultrasonic impact treatment (UIT) technologies in production of welded joints. WELDING IN THE WORLD-LONDON, 44(3), 11–21.
[103] Statnikov, E. S., Muktepavel, V. O., & Blomqvist, A. (2002). Comparison of Ultrasonic Impact Treatment (UIT) and Other Fatigue Life Improvement Methods. Welding in the World, 46(3–4), 20–32. https://doi.org/10.1007/BF03266368
[104] Statnikov, E.Sh. (1997b). Comparison of post-weld deformation methods for increase in fatigue strength of welded joints. IIW. Doc. XIII-1668-97.
[105] Stephens, R. I., Fatemi, A., Stephens, R. R., & Fuchs, H. O. (2001). Metal Fatigue in Engineering. John Wiley and Sons. Inc., New York.
[106] Stoschka, M., Leitner, M., Posch, G., & Eichlseder, W. (2013). Effect of high-strength filler metals on the fatigue behaviour of butt joints. Welding in the World, 57(1), 85–96. https://doi.org/10.1007/s40194-012-0010-6
[107] Stoschka, Michael, Di Leitner, M., Fössl, T., & Posch, G. (2012). Effect of High-Strength Filler Metals on Fatigue. Welding in the World, 56(3–4), 20–29. https://doi.org/10.1007/BF03321332
[108] Suresh, S. (1998). Fatigue of materials (2nd ed). Cambridge University Press.
[109] Tada, H., Paris, P. C., & Irwin, G. R. (1973). The stress analysis of cracks handbook, Del Research Corp.
[110] Tang, L., Ince, A., & Zheng, J. (2018). Numerical Simulation of Residual Stresses in Welding and Ultrasonic Impact Treatment Process. In P. Ferro & F. Berto (Eds.), Residual Stress Analysis on Welded Joints by Means of Numerical Simulation and Experiments. InTech. https://doi.org/10.5772/intechopen.72394
[111] Tang, L., Ince, A., & Zheng, J. (2020). Numerical modeling of residual stresses and fatigue damage assessment of ultrasonic impact treated 304L stainless steel welded joints. Engineering Failure Analysis, 108, 104277. https://doi.org/10.1016/j.engfailanal.2019.104277
[112] Tehrani Yekta, R., Ghahremani, K., & Walbridge, S. (2013). Effect of quality control parameter variations on the fatigue performance of ultrasonic impact treated welds. International Journal of Fatigue, 55, 245–256. https://doi.org/10.1016/j.ijfatigue.2013.06.023
[113] Teng, T.-L., Fung, C.-P., & Chang, P.-H. (2002). Effect of weld geometry and residual stresses on fatigue in butt-welded joints. International Journal of Pressure Vessels and Piping, 79(7), 467–482. https://doi.org/10.1016/S0308-0161(02)00060-1
[114] Vaidya, W. V. (1985). Fatigue crack propagation under a microstructural gradient in a plain carbon steel. Scripta Metallurgica, 19(5), 597–602. https://doi.org/10.1016/0036-9748(85)90344-8
[115] Walker, K. (1970). The Effect of Stress Ratio During Crack Propagation and Fatigue for 2024-T3 and 7075-T6 Aluminum. In M. Rosenfeld (Ed.), Effects of Environment and Complex Load History on Fatigue Life (pp. 1-1–14). ASTM International. https://doi.org/10.1520/STP32032S
[116] Wallbrink, C., Peng, D., Jones, R., & Dayawansa, P. H. (2006). Predicting the fatigue life and crack aspect ratio evolution in complex structures. Theoretical and Applied Fracture Mechanics, 46(2), 128–139. https://doi.org/10.1016/j.tafmec.2006.07.004
[117] Webster, G. A., & Ezeilo, A. N. (2001). Residual stress distributions and their influence on fatigue lifetimes. International Journal of Fatigue, 23, 375–383. https://doi.org/10.1016/S0142-1123(01)00133-5
[118] Weich, I., Ummenhofer, T., Nitschke-Pagel, T., Dilger, K., & Eslami Chalandar, H. (2009). Fatigue Behaviour of Welded High-Strength Steels after High Frequency Mechanical Post-Weld Treatments. Welding in the World, 53(11–12), R322–R332. https://doi.org/10.1007/BF03263475
[119] Weman, K. (2003). Welding processes handbook. CRC Press.
[120] Williams, H. E., Ottsen, H., Lawence, F. V., & Munse, W. H. (1970). The Effects Of Weld Geometry On The Fatigue Behavior Of Welded Connrctions. University of Illinois Engineering Experiment Station. College of Engineering. University of Illinois at Urbana-Champaign. http://hdl.handle.net/2142/14783
[121] Withers, P. J., & Bhadeshia, H. K. D. H. (2001a). Residual stress. Part 1 – Measurement techniques. Materials Science and Technology, 17(4), 355–365. https://doi.org/10.1179/026708301101509980
[122] Withers, P. J., & Bhadeshia, H. K. D. H. (2001b). Residual stress. Part 2 – Nature and origins. Materials Science and Technology, 17(4), 366–375. https://doi.org/10.1179/026708301101510087
[123] Wright, W. (1996). Post-weld Treatment of A Welded Bridge Girder by Ultrasonic Hammer Peening (p. 6).
[124] Yildirim, H. C., & Marquis, G. B. (2012). Fatigue strength improvement factors for high strength steel welded joints treated by high frequency mechanical impact. International Journal of Fatigue, 44, 168–176. https://doi.org/10.1016/j.ijfatigue.2012.05.002
[125] Yildirim, H. C., & Marquis, G. B. (2013). A round robin study of high-frequency mechanical impact (HFMI)-treated welded joints subjected to variable amplitude loading. Welding in the World. https://doi.org/10.1007/s40194-013-0045-3
[126] Yuan, K. L., & Sumi, Y. (2015). Modelling of ultrasonic impact treatment (UIT) of welded joints and its effect on fatigue. Frattura Ed Integrità Strutturale, 9, 34.
[127] Zerbst, U., Ainsworth, R. A., Beier, H. Th., Pisarski, H., Zhang, Z. L., Nikbin, K., Nitschke-Pagel, T., Münstermann, S., Kucharczyk, P., & Klingbeil, D. (2014). Review on fracture and crack propagation in weldments – A fracture mechanics perspective. Engineering Fracture Mechanics, 132, 200–276. https://doi.org/10.1016/j.engfracmech.2014.05.012
[128] Zheng, J., Ince, A., & Tang, L. (2018). Modeling and simulation of weld residual stresses and ultrasonic impact treatment of welded joints. Procedia Engineering, 213, 36–47. https://doi.org/10.1016/j.proeng.2018.02.005
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top