Login | Register

An Investigation of Series and Parallel Configurations for Hybrid Power Amplifiers


An Investigation of Series and Parallel Configurations for Hybrid Power Amplifiers

Matiuzzi Kunzler, Luccas ORCID: https://orcid.org/0000-0003-2586-7586 (2021) An Investigation of Series and Parallel Configurations for Hybrid Power Amplifiers. PhD thesis, Concordia University.

[thumbnail of Kunzler_PhD_S2021.pdf]
Text (application/pdf)
Kunzler_PhD_S2021.pdf - Accepted Version
Available under License Spectrum Terms of Access.


Power Hardware-in-the-Loop (PHIL) is becoming increasingly popular for compartmentalized testing of electric power equipment in several areas such as in electric drive systems and distributed power generation systems. The fundamental idea of PHIL is to create flexible conditions for Devices under Test (DUT) to be properly assessed in real time and dynamic conditions with their rated power levels. Connected to the DUT is the Power Amplifier (PA), which is responsible for increasing the voltage and current levels, given from the Real-Time Simulator (RTS). The DUT is a physical equipment and high-complexity models are used to control the PAs to emulate necessary conditions for the DUT to be evaluated. One of the main benefits of PHIL is that it can provide a platform for conducting a number of severe tests without risking damaging the equipment that is being emulated, while testing the actual response of the DUT. It can also help with the preliminary design and performance assessment of new types of machines, drivers and controllers, thus significantly reducing the time to market of new equipment. The flexibility of PHIL is also one of its main assets, since the combination of the RTS and the PA can be used for various applications only by changing the model and/or parameters of the emulated element.
This thesis will evaluate the main architectures, control strategies and PHIL applications of PAs. Linear Power Amplifiers (LPA) provide an overall great performance due to its high bandwidth but are expensive, mostly at increased power ratings. For high PAs with fast dynamic response and reduced waveform distortion, the Hybrid Power Amplifier (HPA) configuration provides a good cost-performance compromise. HPAs are built essentially with the association of a low-cost Switch Mode Power Amplifier (SMPA) and an LPA.
The first configuration to be investigated is the series connected HPA intended for high voltage systems. The SMPA consists of a Cascaded H-Bridge Multilevel (CHBM) converter for increased modularity. A single-pulse per H-bridge modulation technique called Nearest Level of Control (NLC) is used for minimizing the switching losses. However, this leads to unbalanced power consumption by the H-bridges when the SMPA provides relatively low output voltages, thus compromising the reliability and power quality of the SMPA. A new modulation technique called Split-Voltage Fist-In First-Out (SV-FIFO) that mitigates this issue is proposed. Its implementation requires the use of a supplemental, but simple, control loop based on the magnitude and frequency of the reference output voltage. Experimental results are presented to validate the design approach and demonstrate the high performance achieved with SV-FIFO.
The parallel connected HPA is also evaluated in this thesis. In a similar way to the series connected HPA, the LPA provides high bandwidth (BW) and active power filtering while the bulk of the power is provided by the SMPA. The SMPA is realized with a three-phase Voltage Source Converter (VSC) and three single-phase LPAs. The contribution relies on proposing a new topology and current control strategy that aims to reduce the size of the required LPA, which is costly. This is achieved by using the reference current of the HPA for the current control loop of the LPA, and the actual HPA current as the reference for the SMPA current loop. By making the bandwidth of the current loop of the LPA higher than that the SMPA one, the first provides the fast transient components and harmonic filtering while the second, the bulk of the HPA current.
Additionally, this thesis also covers the evaluation of techniques for Amplitude, Phase Angle and Frequency (APAF) detection for single-phase systems. Amplitude, phase and frequency detection is a key feature for the control of the series HPA, but it is also useful for other important applications, such as the synchronization of renewable sources to Alternate Current (AC) grids, which is a largely growing practice. APAF for single-phase systems are more challenging since they require additional and more complex techniques to determine the phase angle. Usually, both single and three-phase systems are designed for a single and known frequency, usually the grid’s frequency. However, a wider range of frequencies is necessary for other applications such as HPAs. This thesis will examine two proposed techniques for APAF. The first is based on the combination of the integral and derivative actions and the second is based on the modification of a zero-crossing detection system. Both systems are discussed in detail and validated experimentally.

Divisions:Concordia University > Gina Cody School of Engineering and Computer Science > Electrical and Computer Engineering
Item Type:Thesis (PhD)
Authors:Matiuzzi Kunzler, Luccas
Institution:Concordia University
Degree Name:Ph. D.
Program:Electrical and Computer Engineering
Date:10 May 2021
Thesis Supervisor(s):Lopes, Luiz A. C.
Keywords:Power Amplifiers, Hybrid Power Amplifiers, Power Hardware-in-the-loop, Machine Emulation
ID Code:988404
Deposited By: Luccas Matiuzzi Kunzler
Deposited On:29 Jun 2021 23:19
Last Modified:29 Jun 2021 23:19


[1] D. Self, Audio Power Amplifier Design Handbook, Third Edition. Elsevier, 2002.
[2] T. F. Schubert and E. M. Kim, ‘Fundamentals of Electronics: Book 2’, Synth. Lect. Digit. Circuits Syst., vol. 10, no. 2, pp. 1–366, Oct. 2015, doi: 10.2200/S00680ED1V01Y201510DCS047.
[3] S. Kashiwagi, ‘A High-Efficiency Audio Power Amplifier Using a Self-Oscillating Switching Regulator’, IEEE Trans. Ind. Appl., vol. IA-21, no. 4, pp. 906–911, Jul. 1985, doi: 10.1109/TIA.1985.349540.
[4] Jae Hoon Jeong, Gue Hong Kim, Byeong Rok Min, Che Hong Ahn, and Gyu Hyeong Cho, ‘A high efficiency class A amplifier accompanied by class D switching amplifier’, in PESC97. Record 28th Annual IEEE Power Electronics Specialists Conference. Formerly Power Conditioning Specialists Conference 1970-71. Power Processing and Electronic Specialists Conference 1972, Jun. 1997, vol. 2, pp. 1210–1216 vol.2, doi: 10.1109/PESC.1997.616906.
[5] G. Gong, H. Ertl, and J. W. Kolar, ‘A multi-cell cascaded power amplifier’, in Twenty-First Annual IEEE Applied Power Electronics Conference and Exposition, 2006. APEC ’06., Mar. 2006, p. 7 pp., doi: 10.1109/APEC.2006.1620746.
[6] H. Ertl, J. W. Kolar, and F. C. Zach, ‘Basic considerations and topologies of switched-mode assisted linear power amplifiers’, IEEE Trans. Ind. Electron., vol. 44, no. 1, pp. 116–123, Feb. 1997, doi: 10.1109/41.557506.
[7] C. S. Edrington, M. Steurer, J. Langston, T. El-Mezyani, and K. Schoder, ‘Role of Power Hardware in the Loop in Modeling and Simulation for Experimentation in Power and Energy Systems’, Proc. IEEE, vol. 103, no. 12, pp. 2401–2409, Dec. 2015, doi: 10.1109/JPROC.2015.2460676.
[8] N. D. Marks, W. Y. Kong, and D. S. Birt, ‘Stability of a Switched Mode Power Amplifier Interface for Power Hardware-in-the-Loop’, IEEE Trans. Ind. Electron., vol. 65, no. 11, pp. 8445–8454, Nov. 2018, doi: 10.1109/TIE.2018.2814011.
[9] K. Upamanyu and G. Narayanan, ‘Improved Accuracy, Modeling, and Stability Analysis of Power-Hardware-in-Loop Simulation With Open-Loop Inverter as Power Amplifier’, IEEE Trans. Ind. Electron., vol. 67, no. 1, pp. 369–378, Jan. 2020, doi: 10.1109/TIE.2019.2896093.
[10] Q. Hong, I. Abdulhadi, D. Tzelepis, A. Roscoe, B. Marshall, and C. Booth, ‘Realization of High Fidelity Power-Hardware-in-the-Loop Capability Using a MW-Scale Motor-Generator Set’, IEEE Trans. Ind. Electron., vol. 67, no. 8, pp. 6835–6844, Aug. 2020, doi: 10.1109/TIE.2019.2937038.
[11] Sung Chul Oh, ‘Evaluation of motor characteristics for hybrid electric vehicles using the hardware-in-the-loop concept’, IEEE Trans. Veh. Technol., vol. 54, no. 3, pp. 817–824, May 2005, doi: 10.1109/TVT.2005.847228.
[12] H. J. Slater, D. J. Atkinson, and A. G. Jack, ‘Real-time emulation for power equipment development. II. The virtual machine’, IEE Proc. - Electr. Power Appl., vol. 145, no. 3, pp. 153–158, May 1998, doi: 10.1049/ip-epa:19981849.
[13] A. Pantea et al., ‘Six-Phase Induction Machine Model for Electrical Fault Simulation Using the Circuit-Oriented Method’, IEEE Trans. Ind. Electron., vol. 63, no. 1, pp. 494–503, Jan. 2016, doi: 10.1109/TIE.2015.2493727.
[14] B. Jandaghi and V. Dinavahi, ‘Real-Time HIL Emulation of Faulted Electric Machines Based on Nonlinear MEC Model’, IEEE Trans. Energy Convers., vol. 34, no. 3, pp. 1190–1199, Sep. 2019, doi: 10.1109/TEC.2019.2891560.
[15] F. E. Fleming and C. S. Edrington, ‘Real-Time Emulation of Switched Reluctance Machines via Magnetic Equivalent Circuits’, IEEE Trans. Ind. Electron., vol. 63, no. 6, pp. 3366–3376, Jun. 2016, doi: 10.1109/TIE.2016.2521343.
[16] F. Alvarez-Gonzalez, A. Griffo, B. Sen, and J. Wang, ‘Real-Time Hardware-in-the-Loop Simulation of Permanent-Magnet Synchronous Motor Drives Under Stator Faults’, IEEE Trans. Ind. Electron., vol. 64, no. 9, pp. 6960–6969, Sep. 2017, doi: 10.1109/TIE.2017.2688969.
[17] Z. Yang, F. Shang, I. P. Brown, and M. Krishnamurthy, ‘Comparative Study of Interior Permanent Magnet, Induction, and Switched Reluctance Motor Drives for EV and HEV Applications’, IEEE Trans. Transp. Electrification, vol. 1, no. 3, pp. 245–254, Oct. 2015, doi: 10.1109/TTE.2015.2470092.
[18] X. Sun, K. Diao, G. Lei, Y. Guo, and J. Zhu, ‘Real-Time HIL Emulation for a Segmented-Rotor Switched Reluctance Motor Using a New Magnetic Equivalent Circuit’, IEEE Trans. Power Electron., vol. 35, no. 4, pp. 3841–3849, Apr. 2020, doi: 10.1109/TPEL.2019.2933664.
[19] K. S. Amitkumar, R. Thike, and P. Pillay, ‘Linear Amplifier-Based Power-Hardware-in-the-Loop Emulation of a Variable Flux Machine’, IEEE Trans. Ind. Appl., vol. 55, no. 5, pp. 4624–4632, Oct. 2019, doi: 10.1109/TIA.2019.2921286.
[20] K. S. Amitkumar, R. Thike, and P. Pillay, ‘Power-Hardware-in-the-Loop Based Emulation of a Variable Flux Machine’, in 2018 IEEE Energy Conversion Congress and Exposition (ECCE), Sep. 2018, pp. 6454–6460, doi: 10.1109/ECCE.2018.8558315.
[21] R. S. Kaarthik and P. Pillay, ‘Real-time power hardware-in-the-loop emulation of a parallel hybrid electric vehicle drive train’, in 2017 IEEE Transportation Electrification Conference (ITEC-India), Dec. 2017, pp. 1–6, doi: 10.1109/ITEC-India.2017.8333837.
[22] S. Lentijo, S. D’Arco, and A. Monti, ‘Comparing the Dynamic Performances of Power Hardware-in-the-Loop Interfaces’, IEEE Trans. Ind. Electron., vol. 57, no. 4, pp. 1195–1207, Apr. 2010, doi: 10.1109/TIE.2009.2027246.
[23] M. Steurer, C. S. Edrington, M. Sloderbeck, W. Ren, and J. Langston, ‘A Megawatt-Scale Power Hardware-in-the-Loop Simulation Setup for Motor Drives’, IEEE Trans. Ind. Electron., vol. 57, no. 4, pp. 1254–1260, Apr. 2010, doi: 10.1109/TIE.2009.2036639.
[24] G. B. Yundt, ‘Series- or Parallel-Connected Composite Amplifiers’, IEEE Trans. Power Electron., vol. PE-1, no. 1, pp. 48–54, Jan. 1986, doi: 10.1109/TPEL.1986.4766276.
[25] AE Techron, ‘7548 Specification Sheet’. 2015, Accessed: Sep. 29, 2020. [Online]. Available: http://aetechron.com/pdf/7548specsheet.pdf.
[26] Semikron Elektronik GmbH & Co KG, ‘SemiTeach IGBT’. 2015, Accessed: Sep. 29, 2020. [Online]. Available: http://shop.semikron.com/out/media/ds/SEMIKRON_DataSheet_SEMITEACH_IGBT_3M50GB123D_1M50GAL123D_P3_250F_08753450.pdf.
[27] F. H. Raab et al., ‘Power amplifiers and transmitters for RF and microwave’, IEEE Trans. Microw. Theory Tech., vol. 50, no. 3, pp. 814–826, Mar. 2002, doi: 10.1109/22.989965.
[28] B. Sahu and G. A. Rincon-Mora, ‘A high-efficiency linear RF power amplifier with a power-tracking dynamically adaptive buck-boost supply’, IEEE Trans. Microw. Theory Tech., vol. 52, no. 1, pp. 112–120, Jan. 2004, doi: 10.1109/TMTT.2003.821256.
[29] L. M. Kunzler and L. A. C. Lopes, ‘Power balance technique for cascaded H-bridge multilevel cells in a hybrid power amplifier with wide output voltage range’, in 2018 IEEE International Conference on Industrial Technology (ICIT), Feb. 2018, pp. 800–805, doi: 10.1109/ICIT.2018.8352280.
[30] R. C. Beltrame, M. L. da Silva Martins, C. Rech, and H. L. Hey, ‘Hybrid power amplifiers - a review’, in XI Brazilian Power Electronics Conference, Sep. 2011, pp. 189–195, doi: 10.1109/COBEP.2011.6085196.
[31] G. Gong, D. Hassler, and J. W. Kolar, ‘A Comparative Study of Multicell Amplifiers for AC-Power-Source Applications’, IEEE Trans. Power Electron., vol. 26, no. 1, pp. 149–164, Jan. 2011, doi: 10.1109/TPEL.2010.2053559.
[32] O. M. Mueller and J. N. Park, ‘Quasi-linear IGBT inverter topologies’, in Proceedings of 1994 IEEE Applied Power Electronics Conference and Exposition - ASPEC’94, Feb. 1994, pp. 253–259 vol.1, doi: 10.1109/APEC.1994.316391.
[33] B. Wu and M. Narimani, High-Power Converters and AC Drives, 2nd Edition, Second Edition. Wiley-IEEE Press, 2017.
[34] J. Rodriguez et al., ‘Multilevel Converters: An Enabling Technology for High-Power Applications’, Proc. IEEE, vol. 97, no. 11, pp. 1786–1817, Nov. 2009, doi: 10.1109/JPROC.2009.2030235.
[35] R. C. Beltrame, ‘AC Power Sources: Contributions to Study and Development of Hybrid Topologies’, Doctor of Science Thesis, Federal Univervity of Santa Maria, Santa Maria, Brazil, 2012.
[36] G. R. Walker, ‘A Class B switch-mode assisted linear amplifier’, IEEE Trans. Power Electron., vol. 18, no. 6, pp. 1278–1285, Nov. 2003, doi: 10.1109/TPEL.2003.818825.
[37] A. Shirvani, D. K. Su, and B. A. Wooley, ‘A CMOS RF power amplifier with parallel amplification for efficient power control’, IEEE J. Solid-State Circuits, vol. 37, no. 6, pp. 684–693, Jun. 2002, doi: 10.1109/JSSC.2002.1004572.
[38] A. E. Ginart, R. M. Bass, and W. M. Leach, ‘High efficiency class AD audio amplifier for a wide range of input signals’, in Conference Record of the 1999 IEEE Industry Applications Conference. Thirty-Forth IAS Annual Meeting (Cat. No.99CH36370), Phoenix, AZ, USA, 1999, vol. 3, pp. 1845–1850, doi: 10.1109/IAS.1999.805990.
[39] A. E. Ginart, R. M. Bass, W. M. Leach, and T. G. Habetler, ‘Analysis of the class AD audio amplifier including hysteresis effects’, IEEE Trans. Power Electron., vol. 18, no. 2, pp. 679–685, Mar. 2003, doi: 10.1109/TPEL.2003.809330.
[40] L. G. Franquelo, J. Rodriguez, J. I. Leon, S. Kouro, R. Portillo, and M. A. M. Prats, ‘The age of multilevel converters arrives’, IEEE Ind. Electron. Mag., vol. 2, no. 2, pp. 28–39, Jun. 2008, doi: 10.1109/MIE.2008.923519.
[41] J. Rodriguez, Jih-Sheng Lai, and Fang Zheng Peng, ‘Multilevel inverters: a survey of topologies, controls, and applications’, IEEE Trans. Ind. Electron., vol. 49, no. 4, pp. 724–738, Aug. 2002, doi: 10.1109/TIE.2002.801052.
[42] G. Konstantinou, J. Pou, S. Ceballos, R. Darus, and V. G. Agelidis, ‘Switching Frequency Analysis of Staircase-Modulated Modular Multilevel Converters and Equivalent PWM Techniques’, IEEE Trans. Power Deliv., vol. 31, no. 1, pp. 28–36, Feb. 2016, doi: 10.1109/TPWRD.2015.2416759.
[43] A. António-Ferreira, C. Collados-Rodríguez, and O. Gomis-Bellmunt, ‘Modulation techniques applied to medium voltage modular multilevel converters for renewable energy integration: A review’, Electr. Power Syst. Res., vol. 155, pp. 21–39, Feb. 2018, doi: 10.1016/j.epsr.2017.08.015.
[44] N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics: Converters, Applications, and Design, 3rd Edition, Third Edition. Wiley, 2002.
[45] A. S. Gadalla, X. Yan, S. Y. Altahir, and H. Hasabelrasul, ‘Evaluating the capacity of power and energy balance for cascaded H-bridge multilevel inverter using different PWM techniques’, J. Eng., vol. 2017, no. 13, pp. 1713–1718, 2017, doi: 10.1049/joe.2017.0624.
[46] M. A. Perez, S. Bernet, J. Rodriguez, S. Kouro, and R. Lizana, ‘Circuit Topologies, Modeling, Control Schemes, and Applications of Modular Multilevel Converters’, IEEE Trans. Power Electron., vol. 30, no. 1, pp. 4–17, Jan. 2015, doi: 10.1109/TPEL.2014.2310127.
[47] R. R. Karasani, V. B. Borghate, P. M. Meshram, H. M. Suryawanshi, and S. Sabyasachi, ‘A Three-Phase Hybrid Cascaded Modular Multilevel Inverter for Renewable Energy Environment’, IEEE Trans. Power Electron., vol. 32, no. 2, pp. 1070–1087, Feb. 2017, doi: 10.1109/TPEL.2016.2542519.
[48] S. Kouro, R. Bernal, C. Silva, J. Rodriguez, and J. Pontt, ‘High performance torque and flux control for multilevel inverter fed induction motors’, in IECON 2006 - 32nd Annual Conference on IEEE Industrial Electronics, Nov. 2006, pp. 805–810, doi: 10.1109/IECON.2006.347906.
[49] M. Perez, J. Rodriguez, J. Pontt, and S. Kouro, ‘Power Distribution in Hybrid Multi-cell Converter with Nearest Level Modulation’, in 2007 IEEE International Symposium on Industrial Electronics, Jun. 2007, pp. 736–741, doi: 10.1109/ISIE.2007.4374688.
[50] G. T. Son et al., ‘Design and Control of a Modular Multilevel HVDC Converter With Redundant Power Modules for Noninterruptible Energy Transfer’, IEEE Trans. Power Deliv., vol. 27, no. 3, pp. 1611–1619, Jul. 2012, doi: 10.1109/TPWRD.2012.2190530.
[51] C. Young, N. Chu, L. Chen, Y. Hsiao, and C. Li, ‘A Single-Phase Multilevel Inverter With Battery Balancing’, IEEE Trans. Ind. Electron., vol. 60, no. 5, pp. 1972–1978, May 2013, doi: 10.1109/TIE.2012.2207656.
[52] S. Yang, Y. Liu, X. Wang, D. Gunasekaran, U. Karki, and F. Z. Peng, ‘Modulation and Control of Transformerless UPFC’, IEEE Trans. Power Electron., vol. 31, no. 2, pp. 1050–1063, Feb. 2016, doi: 10.1109/TPEL.2015.2416331.
[53] A. Gholizad and M. Farsadi, ‘A Novel State-of-Charge Balancing Method Using Improved Staircase Modulation of Multilevel Inverters’, IEEE Trans. Ind. Electron., vol. 63, no. 10, pp. 6107–6114, Oct. 2016, doi: 10.1109/TIE.2016.2580518.
[54] M. Perez, S. Kouro, J. Rodriguez, and B. Wu, ‘Modified staircase modulation with low input current distortion for multicell converters’, in 2008 IEEE Power Electronics Specialists Conference, Jun. 2008, pp. 1989–1994, doi: 10.1109/PESC.2008.4592235.
[55] J. Chavarria, D. Biel, F. Guinjoan, C. Meza, and J. J. Negroni, ‘Energy-Balance Control of PV Cascaded Multilevel Grid-Connected Inverters Under Level-Shifted and Phase-Shifted PWMs’, IEEE Trans. Ind. Electron., vol. 60, no. 1, pp. 98–111, Jan. 2013, doi: 10.1109/TIE.2012.2186108.
[56] Y. Yu, G. Konstantinou, B. Hredzak, and V. G. Agelidis, ‘Power Balance of Cascaded H-Bridge Multilevel Converters for Large-Scale Photovoltaic Integration’, IEEE Trans. Power Electron., vol. 31, no. 1, pp. 292–303, Jan. 2016, doi: 10.1109/TPEL.2015.2406315.
[57] R. C. Beltrame, M. I. Desconzi, C. Rech, H. L. Hey, and M. L. d. S. Martins, ‘Proposal of a series configuration hybrid ac power source’, in 2011 IEEE Energy Conversion Congress and Exposition, Sep. 2011, pp. 2058–2064, doi: 10.1109/ECCE.2011.6064040.
[58] G. Gong, ‘Hybrid Amplifiers for AC Power Source Applications’, Doctor of Science Thesis, ETH Zurich, Zurich, Switzerlanc, 2009.
[59] A. Barrado, R. Vazquez, E. Olias, A. Lazaro, and J. Pleite, ‘Theoretical study and implementation of a fast transient response hybrid power supply’, IEEE Trans. Power Electron., vol. 19, no. 4, pp. 1003–1009, Jul. 2004, doi: 10.1109/TPEL.2004.830034.
[60] J. T. Stauth and S. R. Sanders, ‘Optimum Biasing for Parallel Hybrid Switching-Linear Regulators’, IEEE Trans. Power Electron., vol. 22, no. 5, pp. 1978–1985, Sep. 2007, doi: 10.1109/TPEL.2007.904220.
[61] M. Lemaire, P. Sicard, and J. Belanger, ‘Prototyping and Testing Power Electronics Systems Using Controller Hardware-In-the-Loop (HIL) and Power Hardware-In-the-Loop (PHIL) Simulations’, in 2015 IEEE Vehicle Power and Propulsion Conference (VPPC), Oct. 2015, pp. 1–6, doi: 10.1109/VPPC.2015.7353000.
[62] K. S. Amitkumar, R. S. Kaarthik, and P. Pillay, ‘A Versatile Power-Hardware-in-the-Loop-Based Emulator for Rapid Testing of Transportation Electric Drives’, IEEE Trans. Transp. Electrification, vol. 4, no. 4, pp. 901–911, Dec. 2018, doi: 10.1109/TTE.2018.2857216.
[63] B. Tabbache, Y. Aboub, K. Marouani, A. Kheloui, and M. E. H. Benbouzid, ‘A simple and effective hardware-in-the-loop simulation platform for urban electric vehicles’, in 2012 First International Conference on Renewable Energies and Vehicular Technology, Mar. 2012, pp. 251–255, doi: 10.1109/REVET.2012.6195279.
[64] M. A. Masadeh, K. S. Amitkumar, and P. Pillay, ‘Power Electronic Converter-Based Induction Motor Emulator Including Main and Leakage Flux Saturation’, IEEE Trans. Transp. Electrification, vol. 4, no. 2, pp. 483–493, Jun. 2018, doi: 10.1109/TTE.2018.2824619.
[65] O. Vodyakho, M. Steurer, C. S. Edrington, and F. Fleming, ‘An Induction Machine Emulator for High-Power Applications Utilizing Advanced Simulation Tools With Graphical User Interfaces’, IEEE Trans. Energy Convers., vol. 27, no. 1, pp. 160–172, Mar. 2012, doi: 10.1109/TEC.2011.2179302.
[66] N. R. Tavana and V. Dinavahi, ‘Real-Time Nonlinear Magnetic Equivalent Circuit Model of Induction Machine on FPGA for Hardware-in-the-Loop Simulation’, IEEE Trans. Energy Convers., vol. 31, no. 2, pp. 520–530, Jun. 2016, doi: 10.1109/TEC.2015.2514099.
[67] A. Schmitt, J. Richter, U. Jurkewitz, and M. Braun, ‘FPGA-based real-time simulation of nonlinear permanent magnet synchronous machines for power hardware-in-the-loop emulation systems’, in IECON 2014 - 40th Annual Conference of the IEEE Industrial Electronics Society, Nov. 2014, pp. 3763–3769, doi: 10.1109/IECON.2014.7049060.
[68] M. Oettmeier et al., ‘Machine emulator: Power-electronics based test equipment for testing high-power drive converters’, in 2010 12th International Conference on Optimization of Electrical and Electronic Equipment, May 2010, pp. 582–588, doi: 10.1109/OPTIM.2010.5510537.
[69] R. M. Kennel, T. Boller, and J. Holtz, ‘Replacement of electrical (load) drives by a hardware-in-the-loop system’, in International Aegean Conference on Electrical Machines and Power Electronics and Electromotion, Joint Conference, Sep. 2011, pp. 17–25, doi: 10.1109/ACEMP.2011.6490562.
[70] S. Grubic, B. Amlang, W. Schumacher, and A. Wenzel, ‘A High-Performance Electronic Hardware-in-the-Loop Drive–Load Simulation Using a Linear Inverter (LinVerter)’, IEEE Trans. Ind. Electron., vol. 57, no. 4, pp. 1208–1216, Apr. 2010, doi: 10.1109/TIE.2009.2037656.
[71] Y. Srinivasa Rao and M. C. Chandorkar, ‘Real-Time Electrical Load Emulator Using Optimal Feedback Control Technique’, IEEE Trans. Ind. Electron., vol. 57, no. 4, pp. 1217–1225, Apr. 2010, doi: 10.1109/TIE.2009.2037657.
[72] M. D. Omar Faruque et al., ‘Real-Time Simulation Technologies for Power Systems Design, Testing, and Analysis’, IEEE Power Energy Technol. Syst. J., vol. 2, no. 2, pp. 63–73, Jun. 2015, doi: 10.1109/JPETS.2015.2427370.
[73] A. Yen, ‘Real-Time Simulation of Renewable Energy Systems Using RT-LAB’, presented at the 14th IEEE Workshop on Control and Modeling for Power Electronics (COMPEL), Salt Lake City, US, 2013.
[74] OPAL-RT Technologies, ‘OP4510 Simulator RT-LAB / RCP / HIL System’. 2015, Accessed: Sep. 29, 2020. [Online]. Available: https://blob.opal-rt.com/medias/L00161_0124.pdf.
[75] M. A. Masadeh and P. Pillay, ‘Induction motor emulation including main and leakage flux saturation effects’, in 2017 IEEE International Electric Machines and Drives Conference (IEMDC), May 2017, pp. 1–7, doi: 10.1109/IEMDC.2017.8002207.
[76] T. Boller and R. M. Kennel, ‘Virtual machine — A hardware in the loop test for drive inverters’, in 2009 13th European Conference on Power Electronics and Applications, Sep. 2009, pp. 1–5.
[77] D. N. Dyck, T. Rahman, and C. Dufour, ‘Internally Consistent Nonlinear Behavioral Model of a PM Synchronous Machine for Hardware-in-the-Loop Simulation’, IEEE Trans. Magn., vol. 50, no. 2, pp. 853–856, Feb. 2014, doi: 10.1109/TMAG.2013.2284355.
[78] T. Ould-Bachir, C. Dufour, J. Bélanger, J. Mahseredjian, and J. David, ‘Effective floating-point calculation engines intended for the FPGA-based HIL simulation’, in 2012 IEEE International Symposium on Industrial Electronics, May 2012, pp. 1363–1368, doi: 10.1109/ISIE.2012.6237289.
[79] L. Wang, J. Jatskevich, C. Wang, and P. Li, ‘A Voltage-Behind-Reactance Induction Machine Model for the EMTP-Type Solution’, IEEE Trans. Power Syst., vol. 23, no. 3, pp. 1226–1238, Aug. 2008, doi: 10.1109/TPWRS.2008.926423.
[80] A. Schmitt, J. Richter, M. Gommeringer, T. Wersal, and M. Braun, ‘A novel 100 kW power hardware-in-the-loop emulation test bench for permanent magnet synchronous machines with nonlinear magnetics’, in 8th IET International Conference on Power Electronics, Machines and Drives (PEMD 2016), Apr. 2016, pp. 1–6, doi: 10.1049/cp.2016.0280.
[81] J. S. S. Prasad, T. Bhavsar, R. Ghosh, and G. Narayanan, ‘Vector control of three-phase AC/DC front-end converter’, in Sadhana, 591-613, Oct. 2008, vol. 33.
[82] R. Mikail, I. Husain, M. S. Islam, Y. Sozer, and T. Sebastian, ‘Four-Quadrant Torque Ripple Minimization of Switched Reluctance Machine Through Current Profiling With Mitigation of Rotor Eccentricity Problem and Sensor Errors’, IEEE Trans. Ind. Appl., vol. 51, no. 3, pp. 2097–2104, Jun. 2015, doi: 10.1109/TIA.2014.2365715.
[83] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, Third Edition. Springer International Publishing, 2020.
[84] Weg Electric Corp. U.S. Headquarters, ‘CFW10 Variable Speed Drive’. Accessed: Feb. 27, 2021. [Online]. Available: https://static.weg.net/medias/downloadcenter/h9a/hde/WEG-cfw10-variable-frequency-drive-wec-usacfw1009-brochure-english.pdf.
[85] Schneider Electric, ‘Altivar 12 Variable Frequency Drives VFD’. Accessed: Feb. 27, 2021. [Online]. Available: https://download.schneider-electric.com/files?p_enDocType=Catalog&p_File_Name=DIA2ED2130101EN+%28web%29.pdf&p_Doc_Ref=DIA2ED2130101EN.
[86] ABB, ‘ACS150 Technical Catalog’. Accessed: Feb. 27, 2021. [Online]. Available: https://search.abb.com/library/Download.aspx?DocumentID=3AUA0000085631&LanguageCode=en&DocumentPartId=&Action=Launch.
[87] M. Maniatopoulos, D. Lagos, P. Kotsampopoulos, and N. Hatziargyriou, ‘Combined control and power hardware in-the-loop simulation for testing smart grid control algorithms’, IET Gener. Transm. Distrib., vol. 11, no. 12, pp. 3009–3018, 8 2017, doi: 10.1049/iet-gtd.2016.1341.
[88] L. M. Kunzler and L. A. C. Lopes, ‘Hybrid Single Phase Wide Range Amplitude and Frequency Detection with Fast Reference Tracking’, in 2019 IEEE 28th International Symposium on Industrial Electronics (ISIE), Jun. 2019, pp. 878–883, doi: 10.1109/ISIE.2019.8781515.
[89] L. M. Kunzler and L. A. C. Lopes, ‘Algorithm for Improving Power Balance for Cascaded H-Bridge Multilevel under Staircase Modulation for Linear Loads’, in IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society, Oct. 2019, vol. 1, pp. 6066–6071, doi: 10.1109/IECON.2019.8927489.
[90] B. Singh and S. R. Arya, ‘Implementation of Single-Phase Enhanced Phase-Locked Loop-Based Control Algorithm for Three-Phase DSTATCOM’, IEEE Trans. Power Deliv., vol. 28, no. 3, pp. 1516–1524, Jul. 2013, doi: 10.1109/TPWRD.2013.2257876.
[91] Q. Zhang, X. Sun, Y. Zhong, M. Matsui, and B. Ren, ‘Analysis and Design of a Digital Phase-Locked Loop for Single-Phase Grid-Connected Power Conversion Systems’, IEEE Trans. Ind. Electron., vol. 58, no. 8, pp. 3581–3592, Aug. 2011, doi: 10.1109/TIE.2010.2087295.
[92] S. Golestan, M. Monfared, F. D. Freijedo, and J. M. Guerrero, ‘Design and Tuning of a Modified Power-Based PLL for Single-Phase Grid-Connected Power Conditioning Systems’, IEEE Trans. Power Electron., vol. 27, no. 8, pp. 3639–3650, Aug. 2012, doi: 10.1109/TPEL.2012.2183894.
[93] F. Blaabjerg, R. Teodorescu, M. Liserre, and A. V. Timbus, ‘Overview of Control and Grid Synchronization for Distributed Power Generation Systems’, IEEE Trans. Ind. Electron., vol. 53, no. 5, pp. 1398–1409, Oct. 2006, doi: 10.1109/TIE.2006.881997.
[94] Y. Han, M. Luo, X. Zhao, J. M. Guerrero, and L. Xu, ‘Comparative Performance Evaluation of Orthogonal-Signal-Generators-Based Single-Phase PLL Algorithms—A Survey’, IEEE Trans. Power Electron., vol. 31, no. 5, pp. 3932–3944, May 2016, doi: 10.1109/TPEL.2015.2466631.
[95] S. Golestan, M. Monfared, F. D. Freijedo, and J. M. Guerrero, ‘Dynamics Assessment of Advanced Single-Phase PLL Structures’, IEEE Trans. Ind. Electron., vol. 60, no. 6, pp. 2167–2177, Jun. 2013, doi: 10.1109/TIE.2012.2193863.
[96] A. B. Shitole, H. M. Suryawanshi, and S. Sathyan, ‘Comparative evaluation of synchronization techniques for grid interconnection of renewable energy sources’, in IECON 2015 - 41st Annual Conference of the IEEE Industrial Electronics Society, Nov. 2015, pp. 001436–001441, doi: 10.1109/IECON.2015.7392302.
[97] F. Xiao, L. Dong, L. Li, and X. Liao, ‘Fast voltage detection method for grid-tied renewable energy generation systems under distorted grid voltage conditions’, IET Power Electron., vol. 10, no. 12, pp. 1487–1493, 10 2017, doi: 10.1049/iet-pel.2016.0738.
[98] C. Guo, W. Liu, C. Zhao, and R. Iravani, ‘A Frequency-Based Synchronization Approach for the VSC-HVDC Station Connected to a Weak AC Grid’, IEEE Trans. Power Deliv., vol. 32, no. 3, pp. 1460–1470, Jun. 2017, doi: 10.1109/TPWRD.2016.2606495.
[99] J. M. Carrasco et al., ‘Power-Electronic Systems for the Grid Integration of Renewable Energy Sources: A Survey’, IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1002–1016, Jun. 2006, doi: 10.1109/TIE.2006.878356.
[100] ‘IEEE Standard for Interconnection and Interoperability of Distributed Energy Resources with Associated Electric Power Systems Interfaces’, IEEE Std 1547-2018 Revis. IEEE Std 1547-2003, pp. 1–138, Apr. 2018, doi: 10.1109/IEEESTD.2018.8332112.
[101] P. Cossutta, S. Raffo, A. Cao, F. Ditaranto, M. P. Aguirre, and M. I. Valla, ‘High speed single phase SOGI-PLL with high resolution implementation on an FPGA’, in 2015 IEEE 24th International Symposium on Industrial Electronics (ISIE), Jun. 2015, pp. 1004–1009, doi: 10.1109/ISIE.2015.7281609.
[102] M. Ciobotaru, R. Teodorescu, and F. Blaabjerg, ‘A new single-phase PLL structure based on second order generalized integrator’, in 2006 37th IEEE Power Electronics Specialists Conference, Jun. 2006, pp. 1–6, doi: 10.1109/pesc.2006.1711988.
[103] S. Golestan, J. M. Guerrero, A. Vidal, A. G. Yepes, J. Doval-Gandoy, and F. D. Freijedo, ‘Small-Signal Modeling, Stability Analysis and Design Optimization of Single-Phase Delay-Based PLLs’, IEEE Trans. Power Electron., vol. 31, no. 5, pp. 3517–3527, May 2016, doi: 10.1109/TPEL.2015.2462082.
[104] M. Hou, ‘Estimation of Sinusoidal Frequencies and Amplitudes Using Adaptive Identifier and Observer’, IEEE Trans. Autom. Control, vol. 52, no. 3, pp. 493–499, Mar. 2007, doi: 10.1109/TAC.2006.890389.
[105] D. Yazdani, A. Bakhshai, G. Joos, and M. Mojiri, ‘A nonlinear adaptive synchronization technique for single-phase grid-connected converters’, in 2008 IEEE Power Electronics Specialists Conference, Jun. 2008, pp. 4076–4079, doi: 10.1109/PESC.2008.4592591.
[106] E. Robles, S. Ceballos, J. Pou, J. L. Martín, J. Zaragoza, and P. Ibañez, ‘Variable-Frequency Grid-Sequence Detector Based on a Quasi-Ideal Low-Pass Filter Stage and a Phase-Locked Loop’, IEEE Trans. Power Electron., vol. 25, no. 10, pp. 2552–2563, Oct. 2010, doi: 10.1109/TPEL.2010.2050492.
[107] C. Picardi, D. Sgró, and G. Gioffré, ‘A simple and low-cost PLL structure for single-phase grid-connected inverters’, in SPEEDAM 2010, Jun. 2010, pp. 358–362, doi: 10.1109/SPEEDAM.2010.5542145.
[108] E. Robles, J. Pou, S. Ceballos, J. Zaragoza, J. L. Martin, and P. Ibañez, ‘Frequency-Adaptive Stationary-Reference-Frame Grid Voltage Sequence Detector for Distributed Generation Systems’, IEEE Trans. Ind. Electron., vol. 58, no. 9, pp. 4275–4287, Sep. 2011, doi: 10.1109/TIE.2010.2098352.
[109] M. Ucar and S. Ozdemir, ‘3-Phase 4-leg unified series–parallel active filter system with ultracapacitor energy storage for unbalanced voltage sag mitigation’, Int. J. Electr. Power Energy Syst., vol. 49, pp. 149–159, Jul. 2013, doi: 10.1016/j.ijepes.2013.01.005.
[110] B. Burger and A. Engler, ‘Fast signal conditioning in single phase systems’, presented at the 9th European Conference on Power Electronics and Applications, Graz, Austria, Aug. 2001, [Online]. Available: https://www.researchgate.net/publication/228812976_Fast_signal_conditioning_in_single_phase_systems.
[111] G. Yin, L. Guo, and X. Li, ‘An Amplitude Adaptive Notch Filter for Grid Signal Processing’, IEEE Trans. Power Electron., vol. 28, no. 6, pp. 2638–2641, Jun. 2013, doi: 10.1109/TPEL.2012.2226752.
[112] S. Golestan, J. M. Guerrero, and J. C. Vasquez, ‘Steady-State Linear Kalman Filter-Based PLLs for Power Applications: A Second Look’, IEEE Trans. Ind. Electron., vol. 65, no. 12, pp. 9795–9800, Dec. 2018, doi: 10.1109/TIE.2018.2823668.
[113] J. Vila-Valls, P. Closas, M. Navarro, and C. Fernandez-Prades, ‘Are PLLs dead? A tutorial on kalman filter-based techniques for digital carrier synchronization’, IEEE Aerosp. Electron. Syst. Mag., vol. 32, no. 7, pp. 28–45, Jul. 2017, doi: 10.1109/MAES.2017.150260.
[114] S. M. Silva, B. M. Lopes, B. J. C. Filho, R. P. Campana, and W. C. Bosventura, ‘Performance evaluation of PLL algorithms for single-phase grid-connected systems’, in Conference Record of the 2004 IEEE Industry Applications Conference, 2004. 39th IAS Annual Meeting., Oct. 2004, vol. 4, pp. 2259–2263 vol.4, doi: 10.1109/IAS.2004.1348790.
[115] L. N. Arruda, S. M. Silva, and B. J. C. Filho, ‘PLL structures for utility connected systems’, in Conference Record of the 2001 IEEE Industry Applications Conference. 36th IAS Annual Meeting (Cat. No.01CH37248), Oct. 2001, vol. 4, pp. 2655–2660 vol.4, doi: 10.1109/IAS.2001.955993.
[116] M. Karimi-Ghartemani and M. R. Iravani, ‘A method for synchronization of power electronic converters in polluted and variable-frequency environments’, IEEE Trans. Power Syst., vol. 19, no. 3, pp. 1263–1270, Aug. 2004, doi: 10.1109/TPWRS.2004.831280.
[117] M. Karimi-Ghartemani and M. R. Iravani, ‘A new phase-locked loop (PLL) system’, in Proceedings of the 44th IEEE 2001 Midwest Symposium on Circuits and Systems. MWSCAS 2001 (Cat. No.01CH37257), Aug. 2001, vol. 1, pp. 421–424 vol.1, doi: 10.1109/MWSCAS.2001.986202.
[118] M. S. Reza, M. Ciobotaru, and V. G. Agelidis, ‘Robust technique for accurate estimation of single-phase grid voltage fundamental frequency and amplitude’, IET Gener. Transm. Distrib., vol. 9, no. 2, pp. 183–192, Spring 2015, doi: 10.1049/iet-gtd.2014.0107.
[119] L. Xiong, F. Zhuo, F. Wang, X. Liu, and M. Zhu, ‘A Fast Orthogonal Signal-Generation Algorithm Characterized by Noise Immunity and High Accuracy for Single-Phase Grid’, IEEE Trans. Power Electron., vol. 31, no. 3, pp. 1847–1851, Mar. 2016, doi: 10.1109/TPEL.2015.2478155.
[120] N. Ikken, A. Bouknadel, A. Haddou, N. Tariba, H. El omari, and H. El omari, ‘PLL Synchronization Method Based on Second-Order Generalized Integrator for Single Phase Grid Connected Inverters Systems during Grid Abnormalities’, in 2019 International Conference on Wireless Technologies, Embedded and Intelligent Systems (WITS), Apr. 2019, pp. 1–5, doi: 10.1109/WITS.2019.8723856.
[121] T. Bei and P. Wang, ‘Robust frequency-locked loop algorithm for grid synchronisation of single-phase applications under distorted grid conditions’, IET Gener. Transm. Distrib., vol. 10, no. 11, pp. 2593–2600, 8 2016, doi: 10.1049/iet-gtd.2015.0914.
[122] S. Shah and L. Parsa, ‘Small-signal modeling of single-phase PLLs using harmonic signal-flow graphs’, in 2017 IEEE Energy Conversion Congress and Exposition (ECCE), Oct. 2017, pp. 4989–4995, doi: 10.1109/ECCE.2017.8096844.
[123] Apex Microtechnology Inc, ‘MP111U Power Operational Amplifier’. 2019, Accessed: Sep. 29, 2020. [Online]. Available: https://www.apexanalog.com/resources/products/mp111u.pdf.
[124] AE Techron, ‘LVC5050 Power Supply Amplifier - Technical Manual’. 2006, Accessed: Sep. 29, 2020. [Online]. Available: www.aetechron.com/pdf/service/LVC5050manual.pdf.
[125] Analog Devices Inc. and H. Zumbahlen, Linear Circuit Design Handbook 1st Edition, First Edition. Newnes, 2008.
[126] ‘IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems’, IEEE Std 519-2014 Revis. IEEE Std 519-1992, pp. 1–29, Jun. 2014, doi: 10.1109/IEEESTD.2014.6826459.
[127] M. Rashed, C. Klumpner, and G. Asher, ‘Hybrid cascaded multilevel converter with integrated series Active Power Filter for interfacing energy storage system to medium voltage grid’, in The 2010 International Power Electronics Conference - ECCE ASIA -, Jun. 2010, pp. 1236–1243, doi: 10.1109/IPEC.2010.5543461.
[128] OPAL-RT Technologies, ‘OP5511 Specifications’. https://wiki.opal-rt.com/display/HDGD/OP5511+Specifications (accessed Sep. 29, 2020).
[129] Texas Instruments, ‘Integrator Circuit. Analog Engineer’s Circuit: Amplifiers (Application Report No. SBOA275A)’. Jan. 2019, Accessed: Sep. 29, 2020. [Online]. Available: http://www.ti.com/lit/an/sboa275a/sboa275a.pdf.
[130] Texas Instruments, ‘Differentiator Circuit. Analog Engineer’s Circuit: Amplifiers (Application Report No. SBOA276A)’. Jan. 2019, Accessed: Sep. 29, 2020. [Online]. Available: http://www.ti.com/lit/an/sboa275a/sboa276a.pdf.
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top