Login | Register

Effect of clogged drainage pipes on the stability of railway embankments

Title:

Effect of clogged drainage pipes on the stability of railway embankments

Wang, Shuyue (2022) Effect of clogged drainage pipes on the stability of railway embankments. Masters thesis, Concordia University.

[thumbnail of Wang_MASc_F2022.pdf]
Preview
Text (application/pdf)
Wang_MASc_F2022.pdf - Accepted Version
11MB

Abstract

The rising water level caused by clogged drainage pipes results in instability in railway embankments and creates dangerous riding conditions for passing trains. As such, it is crucial to identify the factors that influence the slope stability of railway embankments subjected to rising water levels and exposed to train traffic. The purpose of this thesis is to study the slope stability of railway embankments by using a coupled Biot model where pore water pressure and stresses are considered simultaneously. Slope stability analyses are performed using two-dimensional finite element shear strength reduction (FE-SSR) models in which the control variable method is employed to study the effect of key parameters (e.g., embankment geometry, water level, and train speed) on the stability of railway embankments. Maximum safe train speeds are calculated for various slope geometries and water levels to maintain a minimum factor of safety of 1.3.
The simulation results illustrate that a flatter slope with a slope ratio of 1V:3H, 3m railway embankment and the 1m natural slope presents the best result in maximum safe train speed. Consequently, a model is developed to evaluate the influence of compromised drainage on the slope stability of a railway embankment under stationary or moving train loads. The findings of this study are then used to determine desirable slope geometry parameters and maximum safe train speeds for railway embankments subjected to rising water levels.

Divisions:Concordia University > Gina Cody School of Engineering and Computer Science > Building, Civil and Environmental Engineering
Item Type:Thesis (Masters)
Authors:Wang, Shuyue
Institution:Concordia University
Degree Name:M.A. Sc.
Program:Civil Engineering
Date:8 June 2022
Thesis Supervisor(s):Zsaki, Attila Michael
Keywords:Slope stability, Railway embankment, Pipe, FEM
ID Code:990640
Deposited By: Shuyue Wang
Deposited On:27 Oct 2022 14:18
Last Modified:27 Oct 2022 14:18

References:

1.Abramson, L. W., T. S. Lee, S. Sharma, and G. M. Boyce. 2001. Slope Stability and Stabilization Methods. Hoboken, USA: John Wiley & Sons.
2.Albers, B., S. A. Savidis, H. E. Taşan, O. von Estorff, and M. Gehlken. 2012. “BEM and FEM Results of Displacements in a Poroelastic Column.” International Journal of Applied Mathematics and Computer Science. 22(4): 883-896. http://dx.doi.org/10.2478/v10006-012-0065-y.
3.American Railway Engineering and Maintenance-of-Way Association (AREMA). 2010. AREMA Manual for Railway Engineering. Landover, USA.
4.American Railway Engineering and Maintenance-of-Way Association (AREMA). 2013. AREMA Manual for Railway Engineering. Landover, USA.
5.Atalla, N., R. Panneton, and P. Deberque. 1997. “A Mixed Displacement-Pressure Formulation for Poroelastic Materials.” Journal of Acoustical Society of America. 104: 1444-1452. http://dx.doi.org/10.1121/1.424355.
6.Baqersad, M., A. E. Haghighat, M. Rowshanzamir, and H. M. Bak. 2016. “Comparison of Coupled and Uncoupled Consolidation Equations Using Finite Element Method in Plane-Strain Condition.” Civil Engineering Journal. 2(8): 375-388. http://dx.doi.org/10.28991/cej-2016-00000042.
7.Bear, J. 2012. Hydraulics of Groundwater. New York, USA: Courier Corporation.
8.Bertram, A., and R. Gluge. 2013. Solid mechanics: Theory, Modeling, and Problems. Switzerland: Springer.
9.Biot, M. A. 1941. “General Theory of Three‐Dimensional Consolidation.” Journal of Applied Physics. 12(2): 155-164. https://doi.org/10.1063/1.1712886.
10.Bishop, A. W. 1955. “The Use of The Slip Circle in the Stability Analysis of Earth Slope.” Geotechnique. 5(1): 7-17. https://doi.org/10.1680/geot.1955.5.1.7.
11.Bobet, A. 2010. “Numerical Methods in Geomechanics.” The Arabian Journal for Science and Engineering. 35(1B): 27-48.
12.Budhu, M. 2010. Soil Mechanics and Foundations. Hoboken, USA: John Wiley & Sons Inc.
13.Calamak, M., and A. Yanmaz. 2016. "Seepage Characteristics in Embankments Subject to Variable Water Storages on Both Sides." Proc., 4th IAHR Europe Congress. 551-556. http://dx.doi.org/10.13140/RG.2.1.3944.2168.
14.Cedergren, H.R. 1989. Seepage, Drainage and Flow Nets. New York, USA: John Wiley and Sons.
15.Chakeri, H., and B. Ünver. 2014. “A New Equation for Estimating the Maximum Surface Settlement above Tunnels Excavated in Soft Ground.” Environmental Earth Sciences.71(7): 3195-3210. http://dx.doi.org/10.1007/s12665-013-2707-2.
16.Chen, R. and J. Chameau. 1983. “Three-dimensional Limit Equilibrium Analysis of Slopes.” Geotechnique. 32(1): 31-40. https://doi.org/10.1680/geot.1983.33.1.31.
17.Chen, W.F., and Mizuno, E. 1990. Nonlinear Analysis in Soil Mechanics. Amsterdam, Netherlands: Elsevier.
18.Cheng, Y. M., T. Lansivaara, and W. B. Wei. 2007. “Two-dimensional Slope Stability Analysis by Limit Equilibrium and Strength Reduction Methods.” Computers and Geotechnics. 34(3): 137-150. https://doi.org/10.1016/j.compgeo.2006.10.011.
19.Cheng, Y., and C. Lau. 2014. Slope Stability Analysis and Stabilization: New Methods and Insight. London, UK: CRC Press.
20.Clough, R. W. 1960. “The Finite Element Method in Plane Stress Analysis.” 2nd ASCE Conference on Electronic Computation. 345-378.
21.Collins, B. D., and D. Znidarcic. 2004. “Stability Analyses of Rainfall Induced Landslides.” Journal of Geotechnical and Geoenvironmental Engineering. 130(4): 362-372. http://dx.doi.org/10.1061/(ASCE)1090-0241(2004)130:4(362).
22.Cook, R. D. 2007. Concepts and Applications of Finite Element Analysis. Hoboken, USA: John Wiley & Sons.
23.Costabel, M. 1987. “Principles of Boundary Element Methods.” Computer Physics Reports. 6(1-6): 243-274. https://doi.org/10.1016/0167-7977(87)90014-1.
24.Cundall, P. A., and O. D. Strack. 1979. “A Discrete Numerical Model for Granular Assemblies.” Geotechnique. 29(1): 47-65. https://doi.org/10.1680/geot.1979.29.1.47.
25.Cundall, P. A., and R. D. Hart. (1992). "Numerical Modelling of Discontinua." Engineering Computations. 9(2): 101-113. https://doi.org/10.1108/eb023851.
26.Dawson, E., W. Roth, and A. Drescher. 1999. "Slope Stability Analysis by Strength Reduction." Geotechnique. 49(6): 835-840. https://doi.org/10.1680/geot.1999.49.6.835
27.Desai, C. S., and J. T. Christian. 1979. Numerical Methods in Geotechnical Engineering. New York, USA: McGraw-Hill.
28.Dick, S. M., D. E. Otter, and R. J. Connor. 2011. “Comparison of Railcar and Bridge Design Loadings for Development of a Railroad Bridge Fatigue Loading.” AREMA 2011 Annual Conference.
29.Donald, I., and S. Giam. 1988. “Application of the Nodal Displacement Method to Slope Stability Analysis.” Australia-New Zealand Conference on Geomechanics. 22-23.
30.Duncan, J. M. 1996. “State of the Art: Limit Equilibrium and Finite-Element Analysis of Slopes.” Journal of Geotechnical Engineering. 122(7): 577-596. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:7(577).
31.Duncan, J. M., and P. Dunlop. 1969. “Slopes in Stiff-Fissured Clays and Shales.” Journal of the Soil Mechanics and Foundations Division. 95(2): 467-492. https://doi.org/10.1061/JSFEAQ.0001261.
32.Duncan, J. M., S. G. Wright, and T. L. Brandon. 2014. Soil Strength and Slope Stability. New York, USA: John Wiley & Sons.
33.Egeli, I., H. Usun. 2012. “Designing High-Speed Train Railway Embankments Using Finite Element Analysis.” Arabian Journal for Science and Engineering. 37(8): 2127–2136. https://doi.org/10.1007/s13369-012-0302-6.
34.Ercelebi, S. G., H. Copur, and I. Ocak. 2011. “Surface Settlement Predictions for Istanbul Metro Tunnels Excavated by EPB-TBM.” Environmental Earth Sciences. 62(2): 357-365. http://dx.doi.org/10.1007/s12665-010-0530-6.
35.Esveld, C. 2001. Modern Railway Track. Zaltbommel, Netherlands: MRT-Productions.
36.Farias, M., and D. J. Naylor. 1998. “Safety Analysis Using Finite Elements.” Computers and Geotechnics. 22(2): 165-181. https://doi.org/10.1016/S0266-352X(98)00005-6.
37.Fellenius, W. 1922. “Statens Jarnvagars Geotekniska Kommission: Slutbetankande.” Tech. Rep.
38.Fellenius, W. 1927. Erdstatish Berechnungen Mit Reibung und Kohäsion. Berlin, Germany: W. Ernst & Sohn.
39. Fredlund, D. G., and J. Krahn. 1977. “Comparison of Slope Stability Methods of Analysis.” Canadian Geotechnical Journal. 14(3): 429-439. https://doi.org/10.1139/t77-045.
40.Gitirana Jr., G.D.F.N. 2005. “Weather-Related Geo-Hazard Assessment Model for Railway Embankment Stability.” Ph.D. thesis, Dept. of Civil and Geological Engineering, University of Saskatchewan.
41.Griffiths, D. V. 1994. Coupled Analyses in Geomechanics. New York, USA: Springer.
42.Griffiths, D. V., and P. Lane. 1999. “Slope Stability Analysis by Finite Elements.” Geotechnique. 49(3), 387-403. https://doi.org/10.1680/geot.1999.49.3.387.
43.Hall, W. S. 1994. Boundary Element Method. Dordrecht, Netherlands: Springer Science & Business Media.
44.Hammah, R. E., T. E. Yacoub, and J. H. Curran. 2007b. “Serviceability-Based Slope Factor of Safety Using the Shear Strength Reduction (SSR) Method.” 11th ISRM Cong., International Society for Rock Mechanics.1137-1140.
45.Hammah, R. E., T. E. Yacoub, B. Corkum, and J. H. Curran. 2005a. “A Comparison of Finite Element Slope Stability Analysis with Conventional Limit-Equilibrium Investigation.” The 58th Canadian Geotechnical and 6th Joint IAH-CNC and CGS Groundwater Specialty Conferences–GeoSask 2005.
46.Hammah, R. E., T. E. Yacoub, B. Corkum, and J. H. Curran. 2005b. “The Shear Strength Reduction Method for the Generalized Hoek-Brown Criterion.” Alaska Rocks 2005, The 40th US Symposium on Rock Mechanics (USRMS). (1): 234-239.
47.Hammah, R. E., T. E. Yacoub, B. Corkum, and J. H. Curran. 2007a. “Analysis of Blocky Rock Slopes with Finite Element Shear Strength Reduction Analysis.” 1st Canada-US Rock Mechanics Symposium. 329-334.
48.Hoek, E. 2007. “Practical Rock Engineering.” Accessed April 2, 2020. https://www.rocscience.com/assets/resources/learning/hoek/Practical-Rock-Engineering-Full-Text.pdf.
49.Indraratna, B., W. Salim, and C. Rujikiatkamjorn. 2011. Advanced Rail Geotechnology Ballasted Track. London, UK: CRC Press.
50.Janbu, N. 1954. “Application of Composite Slip Surface for Stability Analysis” European Conference on Stability of Earth Slopes. (3): 43-49.
51.Jiang, H., X. Bian, J. Jiang, and Y. Chen. 2016. “Dynamic Performance of High-Speed Railway Formation with the Rise of Water Table.” Engineering Geology. 206: 18-32. https://doi.org/10.1016/j.enggeo.2016.03.002.
52.Johansson, A. 2006. “Out-of-Round Railway Wheels—Assessment of Wheel Tread Irregularities in Train Traffic.” Journal of Sound and Vibration. 293(3): 795-806. http://dx.doi.org/10.1016/j.jsv.2005.08.048.
53.Kainthola, A., D. Verma, R. Thareja, and T. N. Singh. 2013. “A Review on Numerical Slope Stability Analysis.” International Journal of Science, Engineering and Technology Research (IJSETR). 2(6): 1315-1320.
54.Kitano, T., S. Fujita, H. Ogura, and A. Suganuma. 2017. “Numerical Studies of the Effect of Slope Failure on a Buried Pipeline by a Hybrid Analysis Using SPH and FEM.” 16th World Conference on Earthquake. 614.
55.Krahn, J. 2003. “The 2001 RM Hardy Lecture: The Limits of Limit Equilibrium Analyses.” Canadian Geotechnical Journal. 40(3): 643-660. https://doi.org/10.1139/t03-024.
56.Lam, L., D. Fredlund, and S. Barbour. 1987. “Transient Seepage Model for Saturated–Unsaturated Soil Systems: A Geotechnical Engineering Approach.” Canadian Geotechnical Journal. 24(4): 565-580. https://doi.org/10.1139/t87-071.
57.Li, D., J. Hyslip, T. Sussmann, and S. Chrismer. 2002. Railway Geotechnic. London, UK: CRC Press.
58.Li, D., J. P. Hyslip, T. R. Sussmann, and S. M. Chrismer. 2016. Railway Geotechnics. London, UK: Taylor & Francis Group.
59.Li, G. C., and C. S. Desai. 1983. “Stress and Seepage Analysis of Earth Dams.” Journal of Geotechnical Engineering. 109(7): 946-960. https://doi.org/10.1061/(ASCE)0733-9410(1983)109:7(946).
60.Li, G. X. 2004. Advanced Soil Mechanics. Beijing, China: Tsinghua University Press.
61.Lichtberger, B. 2005. Track Compendium: Formation, Permanent Way, Maintenance. Berlin, German: Economics.
62.Matsui, T., and K. C. San. 1988. “Finite Element Stability Analysis Method for Reinforced Slope Cutting.” International Geotechnical Symposium on Theory and Practice of Earth Reinforcement. 317-322. http://worldcat.org/isbn/9061918200.
63.Matsui, T., and K. C. San. 1992. “Finite Element Slope Stability Analysis by Shear Strength Reduction Technique.” Soils and Foundations. 32(1): 59-70. https://doi.org/10.3208/sandf1972.32.59.
64.Matthews, C., Z. Farook, and P, Helm. 2014. “Slope Stability Analysis–Limit Equilibrium or the Finite Element Method.” Ground Engineering. 48(5), 22-28.
65.Morgenstern, N. U., and V. E. Price. 1965. “The Analysis of the Stability of General Slip Surfaces.” Geotechnique. 15(1): 79-93. https://doi.org/10.1680/geot.1965.15.1.79.
66.Munjiza, A. 2004. The Combined Finite-Discrete Element Method. London, UK: John Wiley & Sons.
67.Naylor, D. J. 1982. Finite Elements and Slope Stability. New York, USA: Springer.
68.Nikolić, M., T. Roje-Bonacci, and A. Ibrahimbegović. 2016. “Overview of the Numerical Methods for the Modelling of Rock Mechanics Problems.” Tehnicki vjesnik/Technical Gazette. 23(2): 627-637. https://doi.org/10.17559/TV-20140521084228.
69.Palin, E. J., I. Stipanovic Oslakovic, K. Gavin, and A. Quinn. 2021. “Implications of Climate Change for Railway Infrastructure.” Wiley Interdisciplinary Reviews: Climate Change. 12(5): e728. https://doi.org/10.1002/wcc.728.
70.Pietruszczak, S. 2010. Fundamentals of Plasticity in Geomechanics. Boca Raton, USA: CRC Press.
71.Pinyol, N. M., E. E. Alonso, and S. Olivella. 2008. “Rapid Drawdown in Slopes and Embankments.” Water Resources Research. 44(5). http://dx.doi.org/10.1029/2007WR006525.
72.Potts, D. M., and L. Zdravković. 1999. Finite Element Analysis in Geotechnical Engineering: Theory. London, UK: Thomas Telford.
73.Profillidis, V. A. 2014. Railway Management and Engineering. Burlington, USA: Ashgate Publishing Company.
74.Punmia, B. C., A. K. Jain. 2005. Soil Mechanics and Foundations. New Delhi, India: Laxmi Publications.
75.Putu Tantri, K. S., and Y. Lastiasih. 2015. “Slope Stability Evaluation Using Limit Equilibrium Method (LEM) and Finite Element Method (FEM) for Indonesia Soft Soil.” The 3rd Bali International Seminar on Science and Technology (BISSTECH). (1).
76.Read, D. and D. Li. 1995. Subballast Considerations for Heavy Axle Load Trackage. Pueblo: USA: Transportation Technology Center.
77.Rendulic, L. 1936. “Porenziffer und Porenwasserdruck in Tonen.” Der Bauingenieur. 17: 559-564.
78.Rocscience Inc. 2019. “Convergence Criteria.” Accessed December 20, 2019. https://www.rocscience.com/help/rs2/pdf_files/theory/Convergence_Criteria.pdf.
79.Rowe, R. K. 2012. Geotechnical and Geoenvironmental Engineering Handbook. Berlin, Germany: Springer Science & Business Media.
80.Sadeghi, J., and P. Barati. 2010. “Evaluation of Conventional Methods in Analysis and Design of Railway Track System.” International Journal of Civil Engineering. 8(1): 44-56.
81.Sazzad, M. M., F. I.Rahman, and M. A. Mamun. 2016. “Effects of Water Level Variation on the Stability of Slope by LEM and FEM.” 3rd International Conference on Civil Engineering for Sustainable Development (ICCESD 2016). 953-959.
82.Selig g, E. T., and J. M. Waters. 1994. Track Geotechnology and Substructure Management. London, UK: Thomas Telford.
83.Smith, I. M., D. V. Griffiths, and L. Margetts. 2013. Programming the Finite Element Method. Chichester, UK: John Wiley & Sons.
84.Snitbhan, N., and W. F. Chen. 1976. “Elastic-Plastic Large Deformation Analysis of Soil Slopes.” Computers & Structures. 9(6): 567-577. https://doi.org/10.1016/0045-7949(78)90006-8.
85.Song, E. 1997. “Finite Element Analysis of Safety Factor for Soil Structures.” Chi. J. Geotech. Eng. 19(2):1-7. https://doi.org/10.6052/j.issn.1000-4750.2014.12.1024.
86.Spencer, E. 1967. “A Method of Analysis of the Stability of Embankments Assuming Parallel Inter-Slice Forces.” Geotechnique. 17(1): 11-26. https://doi.org/10.1680/geot.1967.17.1.11.
87.Terzaghi, K. 1925. “Principles of Soil Mechanics, IV—Settlement and Consolidation of Clay.” Engineering News-Record. 95(3): 874-878.
88.Terzaghi, K. 1951. Theoretical Soil Mechanics. London, UK: Chapman and Hall.
89.Timoshenko, S. P., and J. N. Goodier. 1982. Theory of Elasticity. New York, USA: McGraw-Hill.
90.Transport Canada. 2018. “Transportation in Canada 2018.” Accessed December 21, 2019. https://tc.canada.ca/sites/default/files/migrated/transportation_in_canada_2018.pdf.
91.Transport Canada. 2019. "Transportation in Canada 2019." Accessed December 21, 2019. https://tc.canada.ca/en/corporate-services/transparency/corporate-management-reporting/transportation-canada-annual-reports/transportation-canada-2019.
92.Transportation Safety Board (TSB) (2013). “Railway Investigation Report.” Rep. No. R13W0124, Togo, Saskatchewan, Canada.
93.Ugai, K., and D. O. V. Leshchinsky. 1995. “Three-Dimensional Limit Equilibrium and Finite Element Analyses: A Comparison of Results.” Soils and Foundations. 35(4): 1-7. https://doi.org/10.3208/sandf.35.4_1.
94.Wong, R., P. Thomson, and E. Choi. 2006. “In Situ Pore Pressure Responses of Native Peat and Soil under Train Load: A Case Study.” Journal of Geotechnical and Geoenvironmental Engineering. 132(10): 360-1369. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:10(1360).
95.Wright, S. G., F. H. Kulhawy, and J. M. Duncan. 1973. “Accuracy of Equilibrium Slope Stability Analysis.” Journal of the Soil Mechanics and Foundations Division. 99(10): 783-791. https://doi.org/10.1061/JSFEAQ.0001933.
96.Xie, X., Y. Yang, and M. Ji. 2016. “Analysis of Ground Surface Settlement Induced by the Construction of a Large-Diameter Shield-Driven Tunnel in Shanghai, China.” Tunneling and Underground Space Technology. (51): 120-132. http://dx.doi.org/10.1016/j.tust.2015.10.008.
97.Xu, S., and A. M. Zsáki. 2021. “Maximum Safe Freight Train Speed on Railway Embankments under Rapid Drawdown Conditions Based on Coupled Stress-Seepage Slope Stability Analysis.” Transportation Geotechnics. (27): 100486. https://doi.org/10.1016/j.trgeo.2020.100486.
98.Zhang, H.J., Q. Gong, and H. G. Di. 2014. “Numerical Analysis of Shield Tunnel Driving underneath an Existing Railway and Related Reinforcement Effects on Subsidence Control.” International Conference on Pipelines and Trenchless Technology 2014. 828-835. http://dx.doi.org/10.1061/9780784413821.089.
99.Zhang, T. W., Y. J. Cui, F. Lamas-Lopez, N. Calon, and S. C. D’Aguiar. 2016. “Modelling Stress Distribution in Substructure of French Conventional Railway Tracks.” Construction and Building Materials. 116: 326-334. https://doi.org/10.1016/j.conbuildmat.2016.04.137.
100.Zheng, Y. R., S. Y. Zhao, W. X. Kong, and C. J. Deng. 2005. “Geotechnical Engineering Limit Analysis Using Finite Element Method.” Yantu Lixue (Rock Soil Mech). 26(1): 163-168.
101.Zienkiewicz, O. C., C. Humpheson, and R. W. Lewis. 1975. “Associated and Non-Associated Visco-Plasticity in Soils Mechanics.” Geotechnique. 25(5): 671-689. https://doi.org/10.1680/geot.1975.25.4.671.
102.Zienkiewicz, O. C., R. L. Taylor, P. Nithiarasu, and J. Zhu. 1977. The Finite Element Method. London, UK: McGraw-Hill.
103.Zienkiewicz, O.C. and T. Shiomi. 1984. “Dynamic Behaviour of Saturated Porous Media; The Generalized Biot Formulation and its Numerical Solution.” International Journal for Numerical and Analytical Methods in Geomechanics. 8: 71-96. https://doi.org/10.1002/nag.1610080106.
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top