Breadcrumb

 
 

Interactions between TonB from Escherichia coli and the Periplasmic Protein FhuD

Title:

Interactions between TonB from Escherichia coli and the Periplasmic Protein FhuD

Carter, David M. and Miousse, Isabelle R. and Gagnon, Jean-Nicolas and Martinez, Éric and Clements, Abigail and Lee, Jongchan and Hancock, Mark A. and Gagnon, Hubert and Pawelek, Peter D. and Coulton, James W. (2006) Interactions between TonB from Escherichia coli and the Periplasmic Protein FhuD. Journal of Biological Chemistry, 281 (46). pp. 35413-35424. ISSN 0021-9258

[img]
Preview
PDF (published version)
282Kb

Official URL: http://www.jbc.org/cgi/content/abstract/281/46/354...

Abstract

For uptake of ferrichrome into bacterial cells, FhuA, a TonB-dependent outer membrane receptor of Escherichia coli, is required. The periplasmic protein FhuD binds and transfers ferrichrome to the cytoplasmic membrane-associated permease FhuB/C. We exploited phage display to map protein-protein interactions in the E. coli cell envelope that contribute to ferrichrome transport. By panning random phage libraries against TonB and against FhuD, we identified interaction surfaces on each of these two proteins. Their interactions were detected in vitro by dynamic light scattering and indicated a 1:1 TonB-FhuD complex. FhuD residue Thr-181, located within the siderophorebinding site and mapping to a predicted TonB-interaction surface, was mutated to cysteine. FhuD T181C was reacted with two thiol-specific fluorescent probes; addition of the siderophore ferricrocin quenched fluorescence emissions of these conjugates. Similarly, quenching of fluorescence from both probes confirmed binding of TonB and established an apparent KD of 300 nM. Prior saturation of the siderophorebinding site of FhuD with ferricrocin did not alter affinity of TonB for FhuD. Binding, further characterized with surface plasmon resonance, indicated a higher affinity complex with KD values in the low nanomolar range. Addition of FhuD to a preformed TonB-FhuA complex resulted in formation of a ternary complex. These observations led us to propose a novel mechanism in which TonB acts as a scaffold, directing FhuD to regions within the periplasm where it is poised to accept and deliver siderophore.

Divisions:Concordia University > Faculty of Arts and Science > Chemistry and Biochemistry
Item Type:Article
Refereed:Yes
Authors:Carter, David M. and Miousse, Isabelle R. and Gagnon, Jean-Nicolas and Martinez, Éric and Clements, Abigail and Lee, Jongchan and Hancock, Mark A. and Gagnon, Hubert and Pawelek, Peter D. and Coulton, James W.
Journal or Publication:Journal of Biological Chemistry
Date:November 2006
ID Code:6341
Deposited By:KUMIKO VEZINA
Deposited On:14 Sep 2009 15:05
Last Modified:08 Dec 2010 18:56
References:
Borths, E. L., Poolman, B., Hvorup, R. N., Locher, K. P., and Rees, D. C. (2005) Biochemistry 44, 16301-16309

Borths, E. L., Locher, K. P., Lee, A. T., and Rees, D. C. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 16642-16647

Carter, D. M., Gagnon, J. N., Damlaj, M., Mandava, S., Makowski, L., Rodi, D. J., Pawelek, P. D., and Coulton, J. W. (2006) J. Mol. Biol. 357, 236-251

Chang, C., Mooser, A., Plückthun, A., and Wlodawer, A. (2001) J. Biol. Chem. 276, 27535-27540

Clarke, T. E., Ku, S. Y., Dougan, D. R., Vogel, H. J., and Tari, L. W. (2000) Nat. Struct. Biol. 7, 287-291

Clarke, T. E., Braun, V., Winkelmann, G., Tari, L. W., and Vogel, H. J. (2002) J. Biol. Chem. 277, 13966-13972

Ferguson, A. D., Hofmann, E., Coulton, J. W., Diederichs, K., and Welte, W. (1998) Science 282, 2215-2220

Karpowich, N. K., Huang, H. H., Smith, P. C., and Hunt, J. F. (2003) J. Biol. Chem. 278, 8429-8434

Ködding, J., Killig, F., Polzer, P., Howard, S. P., Diederichs, K., and Welte, W. (2005) J. Biol. Chem. 280, 3022-3028

Köster, W., and Braun, V. (1990) J. Biol. Chem. 265, 21407-21410

Krewulak, K. D., Peacock, R. S., and Vogel, H. J. (2004) in Iron Transport in Bacteria (Crosa, J. H., Mey, A. R., and Payne, S. M., eds) pp. 113-129, American Society for Microbiology, Washington, D. C.

Krewulak, K. D., Shepherd, C. M., and Vogel, H. J. (2005) Biometals 18, 375-386

Khursigara, C. M., De Crescenzo, G., Pawelek, P. D., and Coulton, J. W. (2004) J. Biol. Chem. 279, 7405-7412

Khursigara, C. M., De Crescenzo, G., Pawelek, P. D., and Coulton, J. W. (2005) Biochemistry 44, 3441-3453

Khursigara, C. M., De Crescenzo, G., Pawelek, P. D., and Coulton, J. W. (2005) Protein Sci. 14, 1266-1273

Lamb, A. L., Torres, A. S., O'Halloran, T. V., and Rosenzweig, A. C. (2000) Biochemistry 39, 14720-14727

Lawrence, M. C., Pilling, P. A., Epa, V. C., Berry, A. M., Ogunniyi, A. D., and Paton, J. C. (1998) Structure (Lond.) 6, 1553-1561

Lebowitz, J., Lewis, M. S., and Schuck, P. (2002) Protein Sci. 11, 2067-2079

Lee, Y. H., Deka, R. K., Norgard, M. V., Radolf, J. D., and Hasemann, C. A. (1999) Nat. Struct. Biol. 6, 628-633

Locher, K. P., Rees, B., Koebnik, R., Mitschler, A., Moulinier, L., Rosen-busch, J. P., and Moras, D. (1998) Cell 95, 771-778

Mademidis, A., Killmann, H., Kraas, W., Flechsler, I., Jung, G., and Braun, V. (1997) Mol. Microbiol. 26, 1109-1123

Mader, C., Huber, C., Moll, D., Sleytr, U. B., and Sára, M. (2004) J. Bacteriol. 186, 1758-1768

Mandava, S., Makowski, L., Devarapalli, S., Uzubell, J., and Rodi, D. J. (2004) Proteomics 4, 1439-1460

Moeck, G. S., and Letellier, L. (2001) J. Bacteriol. 183, 2755-2764

Myszka, D. G. (1999) J. Mol. Recognit. 12, 279-284

Nakajima, H., Cocquerel, L., Kiyokawa, N., Fujimoto, J., and Levy, S. (2005) Biochem. Biophys. Res. Commun. 328, 1091-1100

Pawelek, P. D., Croteau, N., Ng-Thow-Hing, C., Khursigara, C. M., Moi-seeva, N., Allaire, M., and Coulton, J. W. (2006) Science 312, 1399-1402

Peacock, R. S., Andrushchenko, V. V., Demcoe, A. R., Gehmlich, M., Lu, L. S., Herrero, A. G., and Vogel, H. J. (2006) Biometals 19, 127-142

Peacock, R. S., Weljie, A. M., Howard, S. P., Price, F. D., and Vogel, H. J. (2005) J. Mol. Biol. 345, 1185-1197

Rohrbach, M. R., Braun, V., and Köster, W. (1995) J. Bacteriol. 177, 7186-7193

Rohrbach, M. R., Paul, S., and Köster, W. (1995) Mol. Gen. Genet. 248, 33-42

Schuck, P. (2000) Biophys. J. 78, 1606-1619

Schultz-Hauser, G., Köster, W., Schwarz, H., and Braun, V. (1992) J. Bacteriol. 174, 2305-2311

Shultis, D. D., Purdy, M. D., Banchs, C. N., and Wiener, M. C. (2006) Science 312, 1396-1399

Sprencel, C., Cao, Z., Qi, Z., Scott, D. C., Montague, M. A., Ivanoff, N., Xu, J., Raymond, K. M., Newton, S. M., and Klebba, P. E. (2000) J. Bacteriol. 182, 5359-5364

Yang, Y. R., and Schachman, H. K. (1996) Biophys. Chem. 59, 289-297

Wandersman, C., and Delepelaire, P. (2004) Annu. Rev. Microbiol. 58, 611-647
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Document Downloads

More statistics for this item...

Concordia University - Footer