Login | Register

Diffraction of Light by a Two-Dimensional Lattice of Spheres

Title:

Diffraction of Light by a Two-Dimensional Lattice of Spheres

de Dormale, Bernard and Truong, Vo-Van ORCID: https://orcid.org/0000-0003-3535-3749 (2012) Diffraction of Light by a Two-Dimensional Lattice of Spheres. International Journal of Optics, 2012 . pp. 1-10. ISSN 1687-9384

[img]
Preview
Text (application/pdf)
Vo-Van_DiffractionofLight.pdf - Published Version
Available under License Spectrum Terms of Access.
1MB

Official URL: http://dx.doi.org/10.1155/2012/901970

Abstract

Two-dimensional arrays of particles are of great interest because of their very characteristic optical properties and numerous potential applications. Although a variety of theoretical approaches are available for the description of their properties, methods that are accurate and convenient for computational procedures are always sought. In this work, a new technique to study the diffraction of a monochromatic electromagnetic field by a two-dimensional lattice of spheres is presented. The method, based on Fourier series, can take into account an arbitrary number of terms in the multipole expansion of the field scattered by each sphere. This method has the advantage of leading to simple formulas that can be readily programmed and used as a powerful tool for nanostructure characterization.

Divisions:Concordia University > Faculty of Arts and Science > Physics
Item Type:Article
Refereed:Yes
Authors:de Dormale, Bernard and Truong, Vo-Van
Journal or Publication:International Journal of Optics
Date:2012
Digital Object Identifier (DOI):10.1155/2012/901970
ID Code:978279
Deposited By: DAVID MACAULAY
Deposited On:19 Feb 2014 16:33
Last Modified:18 Jan 2018 17:46
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top