Login | Register

The Effect of Immune Cell Activation on Glycogen Storage in the Context of a Nutrient Rich Microenvironment

Title:

The Effect of Immune Cell Activation on Glycogen Storage in the Context of a Nutrient Rich Microenvironment

Tabatabaei Shafiei, Mahdieh (2016) The Effect of Immune Cell Activation on Glycogen Storage in the Context of a Nutrient Rich Microenvironment. Masters thesis, Concordia University.

[img]
Preview
Text (application/pdf)
Tabatabaei Shafiei_MSc_S2016.pdf - Accepted Version
3MB

Abstract

Lymphocytes of the immune system become activated in order to fight pathogens. Activated lymphocytes absorb more glucose due to their high-energy demand. Glycogen is a branched polymer of glucose units that is formed in times of nutrient sufficiency and it is utilized in times of need. In the presence of high glucose, lymphocytes build up glycogen stores, but the fate of this content is not very well understood. The objective of this work is to demonstrate the presence of glycogen in activated human peripheral blood mononuclear cells (PBMCs) and to investigate the impact of low nutrient levels on the glycogen content of these cells. This was achieved by isolation of PBMCs from human blood, followed by in-vitro activation of the cells by a general activator and a T cell-specific activator. Glycogen concentrations were measured through periodic acid Schiff’s staining (PAS) method and by using an enzymatic detection kit, in various time points. The role of glycogen in times of low nutrient availability was also examined. PBMC were found to contain glycogen by both methods. Upon stimulation of PBMCs with the general activator, there was an increase in glycogen formation in the activated lymphocytes as compared to the non-activated group using both techniques (p<0.05). The effect of T cell-specific activator was consistent with the effects of the general activator. This was confirmed through PAS staining and enzymatic detection kit techniques (p<0.05). Additionally, when the amount of nutrients was lowered, less glycogen was stored in PBMCs. This study demonstrated that activated PBMCs contain more glycogen stores as compared to non-activated cells. The excess glucose that is converted into glycogen may be used by the immune system when nutrients are low.

Divisions:Concordia University > Faculty of Arts and Science > Biology
Item Type:Thesis (Masters)
Authors:Tabatabaei Shafiei, Mahdieh
Institution:Concordia University
Degree Name:M. Sc.
Program:Biology
Date:6 January 2016
Thesis Supervisor(s):Darlington, Peter J.
ID Code:980786
Deposited By: MAHDIEH TABATABAEI SHAFIEI
Deposited On:16 Jun 2016 15:02
Last Modified:18 Jan 2018 17:52

References:

Ader, M., Poulin, R. a., Yang, Y. J., & Bergman, R. N. (1992). Dose-response relationship between lymph insulin and glucose uptake reveals enhanced insulin sensitivity of peripheral tissues. Diabetes, 41(2), 241–253.
Andreewa, P., Huhn, D., Thiel, E., & Rodt, H. (1978). Comparison of enzyme-cytochemical findings and immunological marker investigations in acute lymphatic leukemia (ALL). Blut, 36(5), 299–305.
Arrizabalaga, O., Lacerda, H. M., Zubiaga, A. M., & Zugaza, J. L. (2012). Rac1 protein regulates glycogen phosphorylase activation and controls interleukin (IL)-2-dependent T cell proliferation. Journal of Biological Chemistry, 287(15), 11878–11890.
Barata, J. T., Silva, A., Brandao, J. G., Nadler, L. M., Cardoso, A. A., & Boussiotis, V. A. (2004). Activation of PI3K is indispensable for interleukin 7-mediated viability, proliferation, glucose use, and growth of T cell acute lymphoblastic leukemia cells. The Journal of Experimental Medicine, 200(5), 659–69.
Berg, J. M., Tymoczko, J. L., & Stryer, L. (2002). Biochemistry. W H Freeman.
Brocker, C., Thompson, D., Matsumoto, A., Nebert, D. W., & Vasiliou, V. (2010). Evolutionary divergence and functions of the human interleukin (IL) gene family. Human Genomics, 5(1), 30–55.
Ceulemans, H., & Bollen, M. (2004). Functional diversity of protein phosphatase-1, a cellular economizer and reset button. Physiological Reviews, 84(1), 1–39.
Chang, C.-H., Curtis, J. D., Maggi, L. B., Faubert, B., Villarino, A. V., O’Sullivan, D., … Pearce, E. L. (2013). Posttranscriptional Control of T Cell Effector Function by Aerobic Glycolysis. Cell, 153(6), 1239–1251.
Charles A Janeway, J., Travers, P., Walport, M., & Shlomchik, M. J. (2001). Immunobiology. Garland Science.
Cid, E., Geremia, R. A., Guinovart, J. J., & Ferrer, J. C. (2002). Glycogen synthase: towards a minimum catalytic unit? FEBS Letters, 528(1-3), 5–11.
Downey, G. P., Doherty, D. E., Schwab, B., Elson, E. L., Henson, P. M., & Worthen, G. S. (1990). Retention of leukocytes in capillaries: role of cell size and deformability. Journal of Applied Physiology (Bethesda, Md. : 1985), 69(5), 1767–78.
Drazancić, A., & Janković, D. (1970). PAS positive lymphocytes in the diagnosis of abnormal glucose tolerance during pregnancy. Obstetrics and Gynecology, 36(5), 762–5.
Drummond, G. I. (1967). Muscle metabolism. Fortschritte Der Zoologie, 18(3), 359–429.
Durinck, K., Goossens, S., Peirs, S., Wallaert, A., Van Loocke, W., Matthijssens, F., … Van Vlierberghe, P. (2015). Novel biological insights in T-cell acute lymphoblastic leukemia. Experimental Hematology, 43(8), 625–639.
Estruch, M., Rajamäki, K., Sanchez-Quesada, J. L., Kovanen, P. T., Öörni, K., Benitez, S., & Ordoñez-Llanos, J. (2015). Electronegative LDL induces priming and inflammasome activation leading to IL-1β release in human monocytes and macrophages. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1851(11), 1442–1449.
Fiore, M., Chaldakov, G. N., & Aloe, L. (2009). Nerve growth factor as a signaling molecule for nerve cells and also for the neuroendocrine-immune systems. Reviews in the Neurosciences, 20(2), 133–45.
Forde, J. E., & Dale, T. C. (2007). Glycogen synthase kinase 3: a key regulator of cellular fate. Cellular and Molecular Life Sciences : CMLS, 64(15), 1930–44.
Frauwirth, K. a, Riley, J. L., Harris, M. H., Parry, R. V, Rathmell, J. C., Plas, D. R., … Thompson, C. B. (2002). The CD28 signaling pathway regulates glucose metabolism. Immunity, 16, 769–777.
Gahrton, G., & Yataganas, X. (1976). Quantitative cytochemistry of glycogen in blood cells. Methods and clinical application. Progress in Histochemistry and Cytochemistry, 9(1), 1–30.
Galazios, G., Papazoglou, D., Tsikouras, P., & Kolios, G. (2009). Vascular endothelial growth factor gene polymorphisms and pregnancy. Journal of Maternal-Fetal and Neonatal Medicine, 22(5), 371–378.
Gärtner, I., & Nordén, åke. (2009). Studies on Periodic Acid - Schiff Reactive Material in White Blood Cells from the Peripheral Blood of Patients with Diabetes, Polycythaemia and Chronic Lymphocytic Leukaemia1. Acta Medica Scandinavica, 169(3), 289–302.
Goya, G. F., Marcos-Campos, I., Fernández-Pacheco, R., Sáez, B., Godino, J., Asín, L., … Tres, A. (2008). Dendritic cell uptake of iron-based magnetic nanoparticles. Cell Biology International, 32(8), 1001–5.
Greenberg, C. C., Jurczak, M. J., Danos, A. M., & Brady, M. J. (2006). Glycogen branches out: new perspectives on the role of glycogen metabolism in the integration of metabolic pathways. American Journal of Physiology. Endocrinology and Metabolism, 291(1), E1–8.
Hagemans, M. L. C., Stigter, R. L., Van Capelle, C. I., Van Der Beek, N. M. E., Winkel, L. P. F., Van Vliet, L., … Van Der Ploeg, A. T. (2010). PAS-positive lymphocyte vacuoles can be used as diagnostic screening test for Pompe disease. Journal of Inherited Metabolic Disease, 33(2), 133–139.
Hamelryck, T. W., Dao-Thi, M.-H., Poortmans, F., Chrispeels, M. J., Wyns, L., & Loris, R. (1996). The Crystallographic Structure of Phytohemagglutinin-L. Journal of Biological Chemistry, 271(34), 20479–20485.
Hayhoe, F. G., & Quaglino, D. (1965). Autoradiographic Investigations Of RNA And DNA Metabolism Of Human Leucocytes Cultured With Phytohaemagglutinin; Uridine-5-3h As A Specific Precursor Of Rna. Nature, 205, 151–4.
Hedeskov, C. J. (1968). Early effects of phytohaemagglutinin on glucose metabolism of normal human lymphocytes. . Biochem. J. , 110, 373–380.
Hedeskov, C. J., & Esmann, V. (1967). Major metabolic pathways of glucose in normal human lymphocytes and the effect of cortisol. Biochimica et Biophysica Acta (BBA) - General Subjects, 148(2), 372–383.
Helderman, J. H. (1981). Role of insulin in the intermediary metabolism of the activated thymic-derived lymphocyte. Journal of Clinical Investigation, 67(6), 1636–1642.
Huhn, D. (1984). Leukemia. (E. Thiel & S. Thierfelder, Eds.) (Vol. 93). Berlin, Heidelberg: Springer Berlin Heidelberg.
Johnson, L. N. (1992). Glycogen phosphorylase: control by phosphorylation and allosteric effectors. FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology, 6(6), 2274–82.
Jones, R. V, Goffi, G. P., & Hutt, M. S. (1962). Lymphocyte glycogen content in various diseases. Journal of Clinical Pathology, 15, 36–39.
Leder, L. D., & Donhuijsen, K. (1978). PAS-positive lymphatic cells in angioimmunoblastic lymphadenopathy. Klinische Wochenschrift, 56(5), 225–227.
Lilleyman, J. S., Britton, J. A., Anderson, L. M., Richards, S. M., Bailey, C. C., & Chessells, J. M. (1994). Periodic acid Schiff reaction in childhood lymphoblastic leukaemia. The Medical Research Council Working Party on Childhood Leukaemia. Journal of Clinical Pathology, 47(8), 689–92.
Maciolek, J. a., Alex Pasternak, J., & Wilson, H. L. (2014). Metabolism of activated T lymphocytes. Current Opinion in Immunology, 27(1), 60–74.
Maciolek, J. A., Pasternak, J. A., & Wilson, H. L. (2014). Metabolism of activated T lymphocytes. Current Opinion in Immunology, 27, 60–74.
Maciver, N. J., Jacobs, S. R., Wieman, H. L., Wofford, J. A., Coloff, J. L., & Rathmell, J. C. (2008). Glucose metabolism in lymphocytes is a regulated process with significant effects on immune cell function and survival. Journal of Leukocyte Biology, 84(4), 949–57.
Mailloux, A. W., Zhang, L., Moscinski, L., Bennett, J. M., Yang, L., Yoder, S. J., … Epling-Burnette, P. K. (2013). Fibrosis and subsequent cytopenias are associated with basic fibroblast growth factor-deficient pluripotent mesenchymal stromal cells in large granular lymphocyte leukemia. Journal of Immunology (Baltimore, Md. : 1950), 191(7), 3578–93.
Marguerat, S., & Bähler, J. (2012). Coordinating genome expression with cell size. Trends in Genetics : TIG, 28(11), 560–5.
Meléndez, R., Meléndez-Hevia, E., & Canela, E. I. (1999). The fractal structure of glycogen: A clever solution to optimize cell metabolism. Biophysical Journal, 77(3), 1327–32.
Mitus, W. J., Bergna, L. J., Mednicoff, I. B., & Dameshek, W. (1958). Cytochemical Studies of Glycogen Content of Lymphocytes in Lymphocytic Proliferations. Blood, 13(8), 748–756.
Nicot, C. (2015). Tumor Suppressor Inactivation in the Pathogenesis of Adult T-Cell Leukemia, 2015.
Peach, R. J., Bajorath, J., Naemura, J., Leytze, G., Greene, J., Aruffo, A., & Linsley, P. S. (1995). Both extracellular immunoglobin-like domains of CD80 contain residues critical for binding T cell surface receptors CTLA-4 and CD28. The Journal of Biological Chemistry, 270(36), 21181–7.
Pearce, E. L. (2010). Metabolism in T cell activation and differentiation. Current Opinion in Immunology, 22(3), 314–320.
Pulvertaft, R. J., & Pulvertaft, I. (1967). Activation of lymphocytes. Journal of Clinical Pathology, 20(6), 795–805.
Ragolia, L., & Begum, N. (1998). Protein phosphatase-1 and insulin action. Molecular and Cellular Biochemistry, 182(1-2), 49–58.
Roach, P. J., Depaoli‑Roach, A. A., Hurley, T. D., & Tagliabracci, V. S. (2012). Glycogen and its metabolism: some new developments and old themes. Biochemical Journal, 441(3), 763–787.
Roche, P. A., & Furuta, K. (2015). The ins and outs of MHC class II-mediated antigen processing and presentation. Nature Reviews. Immunology, 15(4), 203–16.
Saraiva, M., Christensen, J. R., Veldhoen, M., Murphy, T. L., Murphy, K. M., & O’Garra, A. (2009). Interleukin-10 production by Th1 cells requires interleukin-12-induced STAT4 transcription factor and ERK MAP kinase activation by high antigen dose. Immunity, 31(2), 209–19.
Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671–675.
Sharvill, D. (1952). The Periodic Acid-Schiff Stain in the Diagnosis of Dermatomycoses. British Journal of Dermatology, 64(9), 329–333.
Tabatabaei Shafiei, M., Carvajal Gonczi, C. M., Rahman, M. S., East, A., François, J., & Darlington, P. J. (2014). Detecting glycogen in peripheral blood mononuclear cells with periodic acid schiff staining. Journal of Visualized Experiments : JoVE, (94), e52199.
Tavridou, A., & Agius, L. (2003). Phosphorylase regulates the association of glycogen synthase with a proteoglycogen substrate in hepatocytes. FEBS Letters, 551(1-3), 87–91.
Toscano, M. A., Bianco, G. A., Ilarregui, J. M., Croci, D. O., Correale, J., Hernandez, J. D., … Rabinovich, G. A. (2007). Differential glycosylation of TH1, TH2 and TH-17 effector cells selectively regulates susceptibility to cell death. Nature Immunology, 8(8), 825–34.
Totsuka, Y., Nagao, Y., Horii, T., Yonekawa, H., Imai, H., Hatta, H., … Atomi, Y. (2003). Physical performance and soleus muscle fiber composition in wild-derived and laboratory inbred mouse strains. Journal of Applied Physiology, 95(2), 720–727.
Villar-Palasi, C. (1968). The hormonal regulation of glycogen metabolism in muscle. Vitamins and Hormones, 26, 65–118.
Wang, R., & Green, D. R. (2012). Metabolic reprogramming and metabolic dependency in T cells. Immunological Reviews, 249(1), 14–26.
Whitehouse, D. B., Tomkins, J., Lovegrove, J. U., Hopkinson, D. A., & McMillan, W. O. (1998). A phylogenetic approach to the identification of phosphoglucomutase genes. Molecular Biology and Evolution, 15(4), 456–62.
Zhu, J., & Paul, W. E. (2008). CD4 T cells: fates, functions, and faults. Blood, 112(5), 1557–69.
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Back to top Back to top