Login | Register

Novel Sequential Batch Electro-Fenton System for Total Kjeldahl Nitrogen Removal: Solution for Highly Polluted Industrial Wastewater


Novel Sequential Batch Electro-Fenton System for Total Kjeldahl Nitrogen Removal: Solution for Highly Polluted Industrial Wastewater

Fellah Jahromi, Arash ORCID: https://orcid.org/0000-0001-8409-5462 (2017) Novel Sequential Batch Electro-Fenton System for Total Kjeldahl Nitrogen Removal: Solution for Highly Polluted Industrial Wastewater. Masters thesis, Concordia University.

Text (application/pdf)
Fellah Jahromi_MASc_S2018.pdf - Accepted Version
Available under License Spectrum Terms of Access.


A novel electro-Fenton sequential batch reactor (EF-SBR) was developed in this study which permits to overcome main drawbacks of Fenton process, sludge production. The primary objective of this research is providing a solution for treatment of industrial wastewater containing specifically high amount of Total Kjeldahl Nitrogen (TKN). For sustainable reason, a more detailed objective of this study is simultaneous removal of ammonia, total nitrogen, and organic nitrogen. Thereby, investigations in four phases were conducted to achieve the objectives. The predominant mechanism of this study is electro Fenton oxidation. In Phase 1, fundamental operating parameters were investigated to achieve optimal design for small scale batch system. Throughout phase 2, the medium scale electrokinetic reactor was developed in which the optimal technological parameters were adjusted to scale up process. A multi compartment large scale EK reactor was designed and tested in Phase 3 to optimize the energy consumption. The results of Phase 3 showed above 99% and 99.6% of ammonia and TKN removal by using potent oxidizing agent in an appropriate time interval which leads to an economical retention time. Throughout Phase 4, the EF-SBR (Electro-Fenton Sequential Batch Reactor) was designed to address a industrial situation. The highlights of Phase 4 were reducing retention time of the EF-SBR while obtaining above 99% removal efficiencies for ammonia, TKN, total nitrogen, and organic nitrogen. Conducted research demonstrated the feasibility of proposed method, as well as fractal analysis to find the pathway to construe the transient variations in the target concentrations while analyzing the samples in an adequate number of points over an extended exposure period. The proposed design is sustainable since limits supplying additional chemicals and optimizes energy use. The technology is ready for a full-scale application.

Divisions:Concordia University > Gina Cody School of Engineering and Computer Science > Building, Civil and Environmental Engineering
Item Type:Thesis (Masters)
Authors:Fellah Jahromi, Arash
Institution:Concordia University
Degree Name:M.A. Sc.
Program:Civil Engineering
Date:13 December 2017
Thesis Supervisor(s):Elektorowicz, Maria
Keywords:Total Kjeldahl Nitrogen, Electrokinetics, Industrial wastewater, Fractal analysis, Electro- Fenton, Sequential batch reactor
ID Code:983381
Deposited On:11 Jun 2018 02:10
Last Modified:08 Jul 2018 00:00


Chapter 1
[1-1] Dongke, Y, “Evaluation of effluent organic nitrogen and its impacts on receiving water bodies”, MA.Sc thesis, University of Massachusetts - Amherst , USA, 2012.
[1-2] Reglementation municipal, “Reglement relative aux rejets dans les ouvrages d’assainssement sur le territoire de l’agglomeration de Montreal (RCG 08-041)”, Montreal, Canada, 2012.
[1-3] Papadopoulos, A., Fatta, D., Lorizidou , M., “Development and optimization of dark Fenton oxidation for the treatment of textile wastewaters with high organic load”, Journal of Hazardous Materials, vol.146, issue 3, 2007,pp. 558-563.
[1-4] Elektorowicz, M., Ibied, S., Olesziewicz J., “Simultaneous superior removal of carbon, phosphorus, nitrogen in a novel single electro-bioreactor”, Patent 12030689, 2011.
[1-5] Nakada, N., Shinohara, H., Murata, A., Kiri, K., Managakia, S., Sato, N., Takada, H., “Removal of selected pharmaceuticals and personal care products (PPCPs) and endocrine-disrupting chemicals (EDCs) during sand filtration and ozonation at a municipal sewage treatment plant”, Water Research, vol.41, 2007, pp. 4373−4382.
[1-6] Shaojun, J., Shourong, Z., Daqiang, Y., Lianhong, W., Liangyan, C., “Aqueous oxytetracycline degradation and the toxicity change of degradation compounds in photoirradiation process” , Journal of Environmental Science,vol. 20, 2008,pp. 806-813.
[1-7] Homem,V., Santos, L., “Degradation and removal methods of antibiotics from aqueous matrices - A review”, Journal of Environmental Management,vol. 92, 2011, pp.2304-2347.
[1-8] Boreen, A., Arnold, W., McNeill, K., “The photochemical fate of sulfa drugs in the aquatic environment: sulfa drugs containing five-membered heterocyclic groups”, Environmental Science Technology, vol.38, 2004, pp.3933-3940.
[1-9] Kümmerer, K., “Antibiotics in the aquatic environment - a review- Part I.”, Chemosphere, vol.75, 2009, pp.417-434.
[1-10] Ruppert, G., Bauer, R., Heisler, G., “The photo-Fenton reaction - an effective photochemical wastewater treatment process”, Journal of Photochemistry and Photobiology, A 73, 1993, pp.75-78.
[1-11] Asghar, A., Raman, A. A. A., Daud, W. M. A. W, “Advanced oxidation processes for in-situ production of hydrogen peroxide/hydroxyl radical for textile wastewater treatment: a review”, Journal of Cleaner Production, vol. 87, 2015, pp. 826-838
[1-12] Bauer, R., Fallmann, H., “The photo-Fenton oxidation – a cheap and efficient wastewater treatment method”, Research on Chemical Intermediates, vol.23, 1997, pp. 341-354.
[1-13] Zhukovskaya, N., “Enhanced electrokinetic process for industrial wastewater treatment containing a high concentration of Total Kjeldahl Nitrogen (TKN)”, Master thesis, Concordia University, Montreal, Canada, 2015.
Chapter 2
[2-1] Salvaggio, N., Basic photographic materials and processes, Elsevier Publishing, third Edition, 2009, pp. 382-394
[2-2] Wang, L., Tselung Y., Handbook of industrial and hazardous wastes treatment, New York, 2004.
[2-3] Jeyaseelan, S., Sathananthan, S., "Clean Technology for Treatment of Photographic Wastes and Silver Recovery",Journal of Environmental Monitoring and Assessment, Springer, 1997, pp.44- 219
[2-4] Bensalah, N., Bedoui, A., Chellam, S., Abdel-Wahab, A., "Electro-Fenton Treatment of Photographic Processing Wastewater". Clean – Soil, Air, Water, vol.41, 2013, pp.635–644
[2-5] Lunar, L., Sicilia, D., Rubio, S., Pérez-Bendito, D., Nickel, U., "Degradation of photographic developers by Fenton’s reagent: condition optimization and kinetics for metol oxidation", Water Research, vol. 34, Issue 6, 2000. pp. 1791-1802
[2-6] United States Environmental Protection Agency, Photographic Processing Effluent Guidelines; Effluent Guides, Electronic code of federal regulations Title 40, Chapter I, Subchapter N, Part 459
[2-7] Zabicky, J., "the chemistry of amides", John Wiley and Sons publishing, 1970
[2-8] Sunners, B., Piette, L., Schneider, W., "Proton magnetic resonance measurements of formamide". Canadian Journal of Chemistry, vol.38, 1966, pp. 681-688
[2-9] Cheng, C., Hong, S., "Oxidative amide synthesis directly from alcohols with amines". Organic and Biomolecular Chemistry, vol. 9, 2010, pp. 20-26
[2-10] Cadoni, R., Porcheddu, A., Giacomelli, G., De Luca, L., "One-Pot Synthesis of Amides from Aldehydes and Amines via C-H Bond Activation". Organic Letters, Vol.14, 2012, pp. 19
[2-11] Pattabiraman, V. R., Bode, J. W., "Rethinking amid bond synthesis", Nature review, vol.480, 2011, pp. 471–479
[2-12] Hunt, I., Spinney, R., "Organic Chemistry On-Line Learning Center", McGraw-Hill, 2009
[2-13] Carey, F. A., Giuliano, R. M., Organic chemistry, McGraw-Hill, 7th edition
[2-14] Lawrence, S. A., Amines; Synthesis, Properties and Application, Cambridge University Press, 2004
[2-15] Wallis, E. S., Lane, J. F., The Hofmann Reaction- Organic Reactions, vol.3, 2011, pp.267–306
[2-16] Ahmed, M. B., Zhou, J. L., Ngo, H. H., Guo H., Thomaidis, N. S., Xu, J., "Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: A critical review", Journal of Hazardous Materials, vol. 323, Part A, 2017, pp.274-298
[2-17] Luo, Y., Guo, W., Ngo, H.H., Nghiem, L.D., Hai, F.I., Zhang, J., Liang, S., Wang, X.C., "A review on the occurrence of micro pollutants in the aquatic environment and their fate and removal during wastewater treatment", Science of The Total Environment, vol. 473, 2014, pp.619–641.
[2-18] Rivera-Utrilla, M., Sánchez-Polo, J., Ferro-García, M.Á., Prados-Joya, G., Ocampo-Pérez, R., "Pharmaceuticals as emerging contaminants and their removal from water: a review", Chemosphere, vol.93, 2013, pp.1268–1287
[2-19] Benner, J., Helbling, D.E., Kohler, H.-P. E., Wittebol, J., Kaiser, E., Prasse ,C., Ternes, T.A., Albers, C.N, Aamand, J., Horemans, B., "Is biological treatment a viable alternative for micropollutant removal in drinking water treatment processes", Water Research Vol.47 ,2013, pp. 5955–5976
[2-20] Radjenovi´c, J., Matosi´c, M., Mijatovi´c, I., Petrovi´c, M., Barceló, D., "Membrane bioreactor (MBR) as an advanced wastewater treatment technology, in: D. Barceló, M. Petrovi´c (Eds.) ", Emerging Contaminants from Industrial and Municipal Waste, Springer, 2008, pp. 37–101.
[2-21] Deegan, A., Shaik, B., Nolan, K., Urell, K., Oelgemöller, M., Tobin, J., Morrissey, A., "Treatment options for wastewater effluents from pharmaceutical companies", International Journal of Environmental Science and Technology, vol. 8, 2011, pp.649–666.
[2-22] Raj, D. S. S., Anjaneyulu, Y., "Evaluation of biokinetic parameters for pharmaceutical wastewaters using aerobic oxidation integrated with chemical treatment", Process Biochemistry, vol.40, 2005, pp. 165–175
[2-23] Sreekanth D., Sivaramakrishna, D., Himabindu, V., Anjaneyulu Y., "Thermophilic treatment of bulk drug pharmaceutical industrial wastewaters by using hybrid up flow anaerobic sludge blanket reactor", Bioresource Technology, Vol. 100, 2009, pp. 2534–2539
[2-24] Töre, G.Y., Meric S., Lofrano, G., De Feo, G., "Removal of trace pollutants from wastewater in constructed wetlands, in: G. Lofrano (Ed.) ", Emerging Compounds Removal from Wastewater, Springer, 2012, pp. 39–58.
[2-25] Matamoros, V., Gutiérrez, R., Ferre,r I., García, J., Bayona, J.M., "Capability of microalgae-based wastewater treatment systems to remove emerging organic contaminants: a pilot-scale study", journal of hazardous materials. Vol. 288, 2015, pp. 34–42
[2-26] Yang, W., Cicek, N., Ilg J., "State-of-the-art of membrane bioreactors: worldwide research and commercial applications in North America", J. Membrane Sci. vol.270, 2006, pp. 201–211.
[2-27] Arana, J., Melián, J.H., Rodrıguez, J. D., Dıaz, O.G., Viera, A., Pena, J. P., Sosa P.M., Jiménez, V.E., "TiO2-photocatalysis as a tertiary treatment of naturally treated wastewater", Catalysis Today, vol.76, 2002, pp. 279–289.
[2-28] Malato, S., Maldonado, M. I., Oller, I., Zapata, A., "Removal of pesticides from water and wastewater by solar-driven photocatalysis, G. Lofrano (Ed.) ", Emerging Compounds Removal from Wastewater, Springer, 2012, pp.59–76
[2-29] Le Truong, G., De, Laat J., Legube, B., "Effects of chloride and sulfate on the rate of oxidation of ferrous ion by H2O2", Water Research, Vol.38, 2004, pp.2384–2394
[2-30] Prieto-Rodriguez, L., Miralles-Cuevas, S., Oller, I., Agüera, A., Puma, G. L., Malato, S., "Treatment of emerging contaminants in wastewater treatment plants (WWTP) effluents by solar photocatalysis using low TiO2 concentrations", Journal of Hazardous Materials, vol. 211, 2012, pp.131–137
[2-31] Snyder, S. A., Adham, S., Redding, A. M., Cannon, F. S., DeCarolis, J., Oppenheimer, J., Wert E.C., Yoon Y., "Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals", Desalination, vol.202, 2007, pp. 156–181.
[2-32]. Poyatos, J. M, Muñio, M. M., Almecija, M. C., Torres, J. C., Hontoria, E., Osorio, F., "Advanced Oxidation Processes for Wastewater Treatment: State of the Art", Water Air Soil Pollution , Springer Netherlands, vol.205 , 2009, pp.187–204
[2-33] Skoumal, M., Cabot, P. L., Centellas, F., Arias C., Rodríguez R. M., Garrido J. A., Brillas E., "Mineralization of paracetamol by ozonation catalyzed with Fe2+, Cu2+ and UVA light". Applied Catalysis B Environmental, Elsevier Publishing, vol.66, 2006, pp.228–240
[2-34] Rosenfeldt, E. J., Chen, P. J., Kullmanc, S., Linden, K. G., "Destruction of estrogenic activity in water using UV Advanced oxidation". The Science of the Total Environment, vol.377, 2007, pp.105–113
[2-35] Hoign´e, J., Bader, H., Haag, W.R., Staehelin, J., "Rate constants of reactions of ozone with organic and inorganic compounds in water. III". Inorganic compounds and radicals". Water Research, vol.19, 1985, pp.993–1004
[2-36] Alaton, I. A., Balcioglu, I. A., Bahnemann D. W. "Advanced oxidation of a reactive dyebath effluent:
Comparison of O3, H2O2/UV-C and TiO2/UV-A processes", Water Research, vol.36, 2002, pp.1143–1154
[2-37] Guittoneau S., Duguet J. P., Bonnel C., Dore, M., "Oxidation of parachloronitrobenzene in dilute aqueous solution by O3+UV and H2O2+UV: a comparative study", Ozone Science and Engineering, vol.12, 1990, pp.73–94
[2-38] Kasprzyk-Hordern, B., Zi´ołek, M., Nawrocki, J., "Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment", Applied Catalyst B: Environmental, vol. 46, 2003, pp.639–669
[2-39] Glaze W. H., Kwang J. W., Chapin, D. H., "Chemistry of water treatment process involving ozone, hydrogen peroxide and ultraviolet radiation", Ozone Science and Technology, vol.9, 1987, pp.335–352.
[2-40] Muruganandham M., Chen S., Wu J., "Mineralization of N-methyl-2-purolidone by advanced oxidation process", Separation and Purification Technology, vol. 55, 2007, pp.360–367
[2-41] Yonar, T., Yonar, G. K., Kestioglu, K., Azbar, N. "Decolorisation of textile effluent using homogeneous photochemical oxidation processes". Coloration Technology, vol.121, 2005, pp.258–264.
[2-42] Peternel, I., Koprivanac, N., and Kusic, H., "UV-based processes for reactive azo dye mineralization". Water Research, vol. 40, 2006, pp.525–532.
[2-43] He, Z., Song, S., Ying, H., Xu, L., Chen, J., "P-Aminophenol degradation by ozonation combined with sonolysis: operating conditions influence and mechanism". Ultrasonics Sonochemistry, vol.14, 1987, pp.568–574
[2-44] Fenton, H. J. H., "Oxidation of tartaric acid in the presence of iron", Journal of Chemical Society Transactions, vol.65, 1894, pp. 899–910
[2-45] Sychev, A.Y., Isak, V.G., "Iron compounds and the mechanism of the homogeneous catalysis of the activation of O2 and H2O2 and of the oxidation of organic substrates", Russian Chemical Reviews, vol.64, 1995, pp.1105–1129.
[2-46] Pignatello, J.J., Oliveros, E., Mackay, A., "Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry", Critical Reviews in Environmental Science and Technology, Taylor and Francis, vol.36, 2006, pp.1–84
[2-47] Neyens, E., Baeyens, J., "A review of classic Fenton’s peroxidation as an advanced oxidation technique", Journal of Hazardous Materials, vol.98, 2003, pp.33–50
[2-48] Babuponnusami, A., Muthukumar, K., "A review on Fenton and improvements to the Fenton process for wastewater treatment", Journal of Environmental Chemical Engineering, Vol.2, Issue 1, 2014, pp.57-572
[2-49] Rivas, F.J., Beltran, F.J., Frades, J., Buxeda, P., "Oxidation of p-hydroxybenzoic acid by Fenton’s reagent", Water Research, vol.35, 2001, pp.387–396.
[2-50] Eisenhauer, H.R., "Oxidation of phenolic wastes", Journal of Water Pollution Control Federation
, vol.36, 1964, pp.1116–1128
[2-51] Ma, Y.S., Huang, S.T., Lin, J.G., "Degradation of 4-nitro phenol using the Fenton process", Water Science and Technology, vol.42, 2000, pp.155–160
[2-52] Babuponnusami, A., Muthukumar, K., "Degradation of phenol in aqueous solution by Fenton, sono-Fenton, Sono-photo-Fenton methods", Clean-Soil Air Water, vol.39, 2011, pp.142–147
[2-53] Lin, S. H., Lo, C.C., "Fenton process for treatment of desizing wastewater", Water Research, vol.31, 1997, pp.2050–2056
[2-54] Ito, K., Jian, W., Nishijima, W., Baes, A. U., Shoto, E., Okada, M., "Comparison of ozonation and AOPs combined with biodegradation for removal of THM precursors in treated sewage effluents", Water Science and Technology, vol.38, 1998, pp.179–186
[2-55] Benatti, C. T., Da-Costa, A. C. S., Tavares, C .R. G., "Characterization of solids originating from the Fenton’s process", Journal of Hazardous Materials, vol.163, 2009, pp. 1246–1253
[2-56] Boonrattanakij, N., Lu, M-C., Anotai J., "Kinetics and mechanism of 2, 6-dimethyl-aniline degradation by hydroxyl radicals", Journal of Hazardous Materials, vol.172, Issues 2–3, 2009, pp.952-957
[2-57] Siedlecka, E. M., Stepnowski, P., "Phenols degradation by Fenton reaction in the presence of chlorides and sulfates", Polish Journal of Environmental Studies, vol.14, 2005, pp.823–828
[2-58] Lin, S. H., Lin, C.M., Leu, H.G., "Operating characteristics and kinetics studies of surfactant wastewater treatment by Fenton oxidation", Water Research, vol.33, 1999, pp.1735–1741
[2-59] Zhang, H., Choi, H. J., Huang, C-P, "Optimization of Fenton process for the treatment of landfill leachate", Journal of Hazardous Materials, vol.125, Issues 1–3, 2005, pp.166-174
[2-60] Kang, Y.W., Hwang, K.Y., "Effects of reaction conditions on the oxidation efficiency in the Fenton process", Water Research, vol.34, 2000, pp.2786–2790
[2-61] Francony, A., Petrier, C., "Sonochemical degradation of carbon tetrachloride in aqueous solution at two frequencies: 20 kHz and 500 kHz", Ultrasonic Sonochemistry. vol.3, 1996, pp.77–82
[2-62] Mason, T.J., Cordemans, E.D., "Ultrasonic intensification of chemical processing and related operations: a review", Chemical Engineering Research and Design, vol.74, 1996, pp.511–516
[2-63] Susick, K.S., Doktycz, S.J., Flint E.B, "On the origin of sonoluminescence and sonochemistry", Ultrasonic Sonochemistry, vol.28, 1990, pp.280–290
[2-64] Dahlem, O., Demaiffe, V., Halloin, V., Reisse, J., "Direct sonication system suitable for medium-scale sonochemical reactors", AIChE Journal, vol.44, 1998, pp.2724–2730
[2-65] Liang, J., Komarov, S., Hayashi, N., Eiki, K., "Recent trends in the decomposition of chlorinated aromatic hydrocarbons by ultrasound irradiation and Fenton’s reagent", Journal of Material Cycles and Waste Management, vol.9, 2007, pp.47–55
[2-66] Fischer, C.H., Hart, E.J., Henglein, A., "Ultrasonic irradiation of water in the presence of oxygen18, 18O2: isotope exchange and isotopic distribution of hydrogen peroxide", Journal of Physical Chemistry, vol.90, 1986, pp.1954–1956
[2-67] Serpone, N., Terzian, R., Hisdaka, H., Pelizetti, E., "Ultrasonic induced dehalogenation and oxidation of 2-, 3-, and 4-chlorophenol in air-equilibrated aqueous media. Similarities with irradiated semiconductor particulates", Journal of Physical Chemistry, vol.98, 1994, pp.2634–2640
[2-68] Kotronarou, A., Mills, G., Hoffmann, M.R., "Ultrasonic irradiation of p-nitrophenol in aqueous solution", Journal of Physical Chemistry, vol.95, 1991, pp.3630–3638
[2-69] Drijvers, D., Langenhove, H.V., Beckers, M., "Decomposition of phenol and trichloroethylene by the ultrasound/H2O2/CWO process", Water Research, vol.33, 1999, pp.1187–1194
[2-70] Nam, S.N., Han, S.K., Kang, J.W, Choi, H., "Kinetics and mechanism of the sonolytic destruction of non-volatile organic compounds: investigation of the sonochemical reaction zone using several OH_ monitoring techniques", Ultrasonic Sonochemistry, vol.10, 2003, pp.139–147
[2-71] Sun, Y., Pignatello, J. J., "Photochemical reactions involved in the total mineralization of 2,4-D by Fe3+/H2O2/UV", Environmental Science & Technology, vol.27,1993, pp.304–310
[2-72] Gogate, P. R., Pandit, A. B., "A review of imperative technologies for wastewater treatment II: hybrid methods", Advances in Environmental Research, vol.8, 2004, pp.553–597
[2-73]. Zepp, R.G, Faust, B.C., Hoigne J., "Hydroxyl radical formation in aqueous reactions (pH 3–8) of iron (II) with hydrogen peroxide: the photo-Fenton reaction", Environmental Science & Technology, vol.26, 1992, pp.313–319
[2-74] McGinnis, B.D., Adams, V.D., Middlebrooks E.J., "Degradation of ethylene glycol in photo Fenton systems", Water Research, vol.34, 2000, pp.2346–2354
[2-75] Safarzadeh-Amiri, A., Bolton, J. R., Cater, S. R., "Ferrioxalate-mediated photodegradation of organic pollutants in contaminated water", Water Research, vol.31, 1997, pp.787–798
[2-76] De Oliveira, I.S., Viana, L., Verona, C., Fallavena, V.L.V., Azevedo C.M.N., Pires M., "Alkydic resin wastewaters treatment by Fenton and photo-Fenton processes", Journal of Hazardous Materials, vol.146, 2007, pp.564–568
[2-77] Kim, S.M., Geissen, S.U.,Vogelpohl A., "Landfill leachate treatment by a photo-assisted Fenton reaction", Water Science and Technology, vol.35, 1997, pp. 239–248
[2-78] Amat, A.M., Arques, A., Miranda, M.A., Segui S., "Photo-Fenton reaction for the abatement of commercial surfactants in a solar pilot plant", Solar Energy, vol.77, 2004, pp.559–566
[2-79] Candeias, L.P., Stratford, M.R.L., Wardman, P., "Formation of Hydroxyl Radicals on Reaction of Hypochlorous Acid with Ferrocyanide, a Model IRON (II) Complex", Free Radical Research, Taylor and Francis Publishing, vol.20, 1994, pp. 241–249
[2-80] Bokare, A. D., Choi, W., "Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes", Journal of Hazardous Materials, vol.275, 2014, pp.121-135
[2-81] Brillas, E., Calpe, J. C., Casado, J., "Mineralization of 2,4-D by advanced electrochemical oxidation processes", Water Research, vol.34, Issue 8, 2000, pp.2253-2262
[2-82] Oturan, M., "An ecologically effective water treatment technique using electrochemically generated hydroxyl radicals for in situ destruction of organic pollutants: Application to herbicide 2, 4-D", Journal of Applied Electrochemistry, vol.30, 2000, pp.475
[2-83] Kapałka, A., Baltruschat, H., Comninellis, C., "Electrochemical Oxidation of Organic Compounds Induced by Electro-Generated Free Hydroxyl Radicals on BDD Electrodes" Synthetic Diamond Films: Preparation, Electrochemistry, Characterization, and Applications, 2011, pp. 237-260.
[2-84] Nguyen-Manh, D., Ntoahae, P. S., Pettifor, D. G., Ngoepe, P. E., "Electronic Structure of Platinum-Group Minerals: Prediction of Semiconductor Band Gaps", Molecular simulation,Taylor and Francis Publishing, vol. 22, 1999, pp.23-30
[2-85] Nidheesh, P.V., Gandhimathi, R., "Removal of Rhodamine B from aqueous solution using graphite–graphite electro-Fenton system", Desalination and Water Treatment, Taylor and Francis Publishing, vol.52, 2014, Issue 10-12, pp.1872-1877
[2-86] Özcan, A., Yücel, S., Savaş, Koparal, A., Oturan, M.A., "Carbon sponge as a new cathode material for the electro-Fenton process: Comparison with carbon felt cathode and application to degradation of synthetic dye basic blue 3 in aqueous medium", Journal of Electroanalytical Chemistry, vol.616, Issues 1–2, 2008, pp.71-78
[2-87] Sirés, I., Garrido, J. A., Rodríguez, R. M.,Brillas, E., Oturan, N., Oturan, M. A., "Catalytic behavior of the Fe3+/ Fe2+ system in the electro-Fenton degradation of the antimicrobial chlorophene", Applied Catalysis B: Environmental, vol.72, Issues 3–4, 2007, pp.382-394
[2-88] Kishimoto, N., Kitamura, T., Kato, M., Otsu, H., "Reusability of iron sludge as an iron source for the electrochemical Fenton-type process using Fe2+/HOCl system", Water Research, vol.47, Issue 5, 2013, pp.1919-1927
[2-89] Kishimoto, N., Kitamura, T., Nakamura, Y., "Applicability of an electrochemical Fenton-type process to actual wastewater treatment", Water Science and Technology, vol.72, 2015, pp.850-857
[2-90] Flox ,C., Garrido, J.A., Rodríguez, R.M., Cabot, P.L., Centellas F., Arias C., Brillas E., "Mineralization of herbicide mecoprop by photoelectro-Fenton with UVA and solar light", Catalysis Today, vol.129, Issues 1–2, 2007, pp.29-36
[2-91] Hammami, S., Oturan, N., Bellakhal, N., Dachraoui, M., Oturan, M.A., "Oxidative degradation of direct orange 61 by electro-Fenton process using a carbon felt electrode: Application of the experimental design methodology", Journal of Electroanalytical Chemistry, vol.610, Issue 1, 2007, pp.75-84
[2-92] Isarain-Chávez, E., Rodríguez, R. M., Garrido, J. A., Arias, C., Centellas, F., Cabot, P. L., Brillas, E., "Degradation of the beta-blocker propranolol by electrochemical advanced oxidation processes based on Fenton's reaction chemistry using a boron-doped diamond anode", Electrochimica Acta, vol.56, Issue 1, 2010, pp.215-221
[2-93] El-Ghenymy, A., Rodríguez, R. M., Arias, C., Centellas, F., Garrido J. A., Cabot P. L., Brillas E., "Electro-Fenton and photoelectro-Fenton degradation of the antimicrobial sulfamethazine using a boron-doped diamond anode and an air-diffusion cathode", Journal of Electroanalytical Chemistry, vol.701, 2013, pp.7-13
[2-94] Labiadh L., Oturan M.A., Panizza M., Hamadi N. B., Ammar S., "Complete removal of AHPS synthetic dye from water using new electro-fenton oxidation catalyzed by natural pyrite as heterogeneous catalyst", Journal of Hazardous Materials, vol.297, ISSN 0304-3894,2015, pp.34-41
[2-95] Iranifam M., Zarei M., Khataee A. R., "Decolorization of C. I., “Basic Yellow 28 solution using supported ZnO nanoparticles coupled with photoelectro-Fenton process”, Journal of Electroanalytical Chemistry, vol.659, Issue 1, 2011, pp.107-112
[2-96] Wu, J., Zhang H., Oturan, N., Wang, Y., Chen, L., Oturan, M.A., "Application of response surface methodology to the removal of the antibiotic tetracycline by electrochemical process using carbon-felt cathode and DSA (Ti/RuO2–IrO2) anode", Chemosphere, vol.87, Issue 6, 2012, pp.614-620
[2-97] Khataee, A., Marandizadeh, H., Zarei, M., Aber, S., Vahid, B., Hanifehpou,r Y., Joo, S. W., "Treatment of an Azo Dye by Citrate Catalyzed Photoelectro-Fenton Process Under Visible Light using Carbon Nanotube-polytetrafluoroethylene Cathode", Journal of Current Nanoscience, vol.9, Issue 3 , 2013
[2-98] Garcia-Segura, S., Cavalcanti, E. B., Brillas, E., "Mineralization of the antibiotic chloramphenicol by solar photoelectro-Fenton: From stirred tank reactor to solar pre-pilot plant", Applied Catalysis B: Environmental, vol.144, 2014, pp.588-598
[2-99] Boye, B., Dieng, M.M., Brillas, E., "Degradation of Herbicide 4-Chlorophenoxyacetic Acid by Advanced Electrochemical Oxidation Methods", Environmental Science & Technology, vol.36, 2002, pp.3030-3035
[2-100] Serra, A., Domènech, X., Arias, C., Brillas, E., Peral J., "Oxidation of α-methylphenylglycine under Fenton and electro-Fenton conditions in the dark and in the presence of solar light", Applied Catalysis B: Environmental, vol.89, Issues 1–2, 2009, pp.12-21
[2-101] Antonin,V.S., Garcia-Segura, S., Santos, M.C., Brillas, E., "Degradation of Evans Blue diazo dye by electrochemical processes based on Fenton’s reaction chemistry", Journal of Electroanalytical Chemistry, vol.747, 2015, pp.1-11
[2-102] Skoumal, M., Arias, C., Cabot, P.L., Centellas F, Garrido J.A., Rodríguez R.M., Brillas E., "Mineralization of the biocide chloroxylenol by electrochemical advanced oxidation processes", Chemosphere, vol.71, Issue 9, 2008, pp.1718-1729
[2-103] Flox C., Cabot, P.L., Centellas, F., Garrido, J.A., Rodríguez, R.M., Arias, C., Brillas, E., "Solar photoelectro-Fenton degradation of cresols using a flow reactor with a boron-doped diamond anode", Applied Catalysis B: Environmental, vol.75, Issues 1–2, 2007, pp.17-28
[2-104] Santos, A., Yusts, P., Rodriguez, S., Simon, E., Garcia-Ochoa, F., "Abatement of phenolic mixtures by catalytic wet oxidation enhanced by Fenton's pretreatment: Effect of H2O2 dosage and temperature", Journal of Hazardous Materials, vol.146, Issue 3, 2007, pp.595-601
[2-105] El-Ghenymy, A, Garrido, J.A., Rodríguez, R.M., Cabot, P.L., Centellas, F., Arias, C., Brillas, E., "Degradation of sulfanilamide in acidic medium by anodic oxidation with a boron-doped diamond anode", Journal of Electroanalytical Chemistry, vol.689, 2013, pp.149-157
[2-106] Malato, S., Fernández-Ibáñez, P., Maldonado, M.I., Blanco J., Gernjak W., "Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends", Catalysis Today, vol.147, Issue 1, 2009, pp.1-59
[2-107] Pignatello, J. J., "Dark and photoassisted iron (3+)-catalyzed degradation of chlorophenoxy herbicides by hydrogen peroxide", Environmental Science & Technology, vol.26, 1992, pp.944-951
[2-108] Meeker, R.E., inventors. Stabilization of hydrogen peroxide. United States, Patent 3208825 A. 1965 September 28.
[2-109] Daneshvar, N., Aber, S., Vatanpour, V., Rasoulifard, M. H., "Electro-Fenton treatment of dye solution containing Orange II: Influence of operational parameters", Journal of Electroanalytical Chemistry, vol.615, Issue 2, 2008, pp.165-174
[2-110] Chiang, L-C, Chang, J-E, Wen, T-C, "Indirect oxidation effect in electrochemical oxidation treatment of landfill leachate", Water Research, vol.29, Issue 2, 1995, pp.671-678
[2-111] Anglada, A., Urtiaga, A., Ortiz, I., Mantzavinos, D., Diamadopoulos, E., "Boron-doped diamond anodic treatment of landfill leachate: Evaluation of operating variables and formation of oxidation by-products", Water Research, Vol.45, Issue 2, 2011, pp.828-838
[2-112] Orescanin, V., Kollar, R., Nad, K., Mikelic, I.L., Gustek, S.F., "Treatment of winery wastewater by electrochemical methods and advanced oxidation processes", Journal of Environmental Science and Health, Part A ,vol.48 , Issue 12, 2013
[2-113] El-Desoky, H.S., Ghoneim, M. M., Zidan, N. M., "Decolorization and degradation of Ponceau S azo-dye in aqueous solutions by the electrochemical advanced Fenton oxidation", Desalination, vol.264, Issues 1–2, 2010, pp.143-150
[2-114] Rosales, E., Pazos, M., Longo, M. A., Sanromán, M. A., "Electro-Fenton decoloration of dyes in a continuous reactor: A promising technology in colored wastewater treatment", Chemical Engineering Journal, vol.155, Issues 1–2, 2009, pp.62-67
[2-115] Gözmen, B., Kayan, B., Gizir, A. M., Hesenov, A., "Oxidative degradations of reactive blue 4 dye by different advanced oxidation methods", Journal of Hazardous Materials, vol.168, Issue 1, 2009, pp.129-136
[2-116] Almeida, L.C., Garcia-Segura, S., Arias, C., Bocchi, N., Brillas, E., "Electrochemical mineralization of the azo dye Acid Red 29 (Chromotrope 2R) by photoelectro-Fenton process", Chemosphere, vol.89, Issue 6, 2012, pp.751-758
[2-117] Garcia-Segura, S., Almeida, L.C., Bocchi, N., Brillas, E., "Solar photoelectro-Fenton degradation of the herbicide 4-chloro-2-methylphenoxyacetic acid optimized by response surface methodology", Journal of Hazardous Materials, vol.194, 2011, pp.109-118
[2-118] Moreira, F.C., Boaventura, R.A.R, Brillas E., Vítor V.J.P, "Electrochemical advanced oxidation processes: A review on their application to synthetic and real wastewaters" Applied Catalysis B: Environmental, vol.202, 2017, pp.217–261
[2-119] Zhang, H., Zhang, D., Zhou, J., "Removal of COD from landfill leachate by electro- Fenton method", Journal of Hazardous Materials. vol.135, 2006, pp.106–111
[2-120] Yuan, S., Tian, M., Cui, Y., Lin, L., Lu, X., "Treatment of nitrophenols by cathode reduction and electro-Fenton methods", Journal of Hazardous Materials, vol.137, 2006, pp.573–580.
[2-121] Oturan, M.A., Pimentel, M., Oturan, N., Sirés, I., "Reaction sequence for the mineralization of the short-chain carboxylic acids usually formed upon cleavage of aromatics during electrochemical Fenton treatment", Electrochimica Acta, vol.54, Issue 2, 2008, pp.173-182
[2-122] Pimentel, M., Oturan, N., Dezotti, M., Oturan, M.A., "Phenol degradation by advanced electrochemical oxidation process electro-Fenton using a carbon felt cathode", Applied Catalysis B: Environmental, vol.83, Issues 1–2, 2008, pp.140-149
[2-123] Oturan, N., van Hullebusch, E. D., Zhang, H., Mazeas, L., Budzinski, H., Menach, K .L., Oturan, M. A., "Occurrence and Removal of Organic Micropollutants in Landfill Leachates Treated by Electrochemical Advanced Oxidation Processes", Environmental Science & Technology, vol.49,2015, pp.12187-12196
[2-124] Brillas, E., Casado, J., "Aniline degradation by Electro-Fenton and peroxi-coagulation processes using a flow reactor for wastewater treatment", Chemosphere, vol.47, Issue 3, 2002, pp.241-248
[2-125] Moreira, F. C., Boaventura, R. A. R., Brillas, E., Vilar, V.J.P, "Remediation of a winery wastewater combining aerobic biological oxidation and electrochemical advanced oxidation processes", Water Research, vol.75, 2015, pp.95-108
[2-126] Wang, C., Chou, W., Chung, M., Kuo, Y., "COD removal from real dyeing wastewater by electro-Fenton technology using an activated carbon fiber cathode", Desalination, vol.253, Issues 1–3, 2010, pp.129-134
[2-127] Kurt, U., Apaydin, O., Gonullu, M.T., "Reduction of COD in wastewater from an organized tannery industrial region by Electro-Fenton process", Journal of Hazardous Materials, vol.143, Issues 1–2, 2007, pp.33-40
[2-128] Brillas, E., Mur, E., Sauleda, R., Sànchez, L., Peral, J., Domènech, X., Casado, J., "Aniline mineralization by AOP's: anodic oxidation, photocatalysis, electro-Fenton and photoelectro-Fenton processes", Applied Catalysis B: Environmental, vol.16, Issue 1, 1998, pp.31-42
[2-129] Cañizares, P., Paz, R., Sáez, C., Rodrigo, M. A., "Costs of the electrochemical oxidation of wastewaters: A comparison with ozonation and Fenton oxidation processes", Journal of Environmental Management, vol. 90, Issue 1, 2009, pp. 410-420
Chapter 3
[3-1] Kushwaha, J. P., Srivastava, V. C., Mall, I. D., “Sequential batch reactor for dairy wastewater treatment: Parametric optimization; kinetics and waste sludge disposal”, Journal of Environmental Chemical Engineering, vol 1, Issue 4, 2013, pp. 1036-1043
[3-2] EMD Millipore MColortest™ Sulfate Test Kits, colorimetric with color-disk comparator method, 25 – 50 – 75 -100 – 130 – 160 – 190 – 240 – 300 -400 mg/L MColortest, EMD Millipore 1183890001
[3-3] Boopathy R., Mandal A. B., Sekaran G., “Electrochemical treatment of evaporated residue of reverse osmosis concentrate generated from the leather industry”, RSC Advances, 4, 2014, pp.54-61.
[3-4] Avis, D., Fukuda, K., “Reverse Search for Enumeration”, Discrete Applied Mathematics, vol. 65, 1996, pp. 21-46.
[3-5] Nitrogen, Simplified TKN, 0 to 16 mg/L TKN, s-TKN™ Method, Hach Method 10242, DOC316.53.01258, (01/2017), Edition 4
[3-6] Nitrogen, Ammonia, High Range 2 to 47 mg/L NH3–N, Salicylate Method, Hach Method 10205, DOC316.53.01083, (11/2016), Edition 10
[3-7] Nitrate high Range, 5 to 35 mg/L NO3––N or 22 to 155 mg/L NO3–, Dimethylphenol Method, Hach Method 10206, DOC 316.53.01071, (09/2015), Edition 9
[3-8] Sulfate High Range (150 to 900 mg/L SO42–) Turbidimetric Method, Hach Method 10227, DOC 316.53.01232, (2012), Edition 7
[3-9] Haber, F., Weiss, J., “The Catalytic Decomposition of Hydrogen Peroxide by Iron Salts” Mathematical, Physical and Engineering Science, 147, 1934, pp. 332–351.
[3-10] Brillas, E., Sirés, I., Oturan, M.A., “Electro-Fenton Process and Related Electrochemical Technologies Based on Fenton’s Reaction Chemistry” , Chemical Reviews, 109 (12), 2009, pp. 6570–6631.
[3-11] Nidheesh, P., Gandhimathi, R., “Trends in the electro-Fenton process for water and wastewater treatment: An overview”. Desalination, vol. 299, 2012, pp. 1-15.
[3-12] Girault, H., “Analytical and Physical Electrochemistry”, EPFL Press, 2004, pp. 141-175.
[3-13] Rajeshwar, K., Ibanez, J.,” Environmental Electrochemistry: Fundamentals and Applications in Pollution Sensors and Abatement” Academic Press, 1997, pp. 62-64.
[3-14] Jianrong, Wu, Berland K. M., “Propagators and Time-Dependent Diffusion Coefficients for Anomalous Diffusion”, Biophysical Journal, vol. 95, Issue 4, 2008, pp. 2049-2052
[3-15] Weiss, M., Elsner, M., Kartberg, F., Nilsson, T., “Anomalous subdiffusion is a measure for cytoplasmic crowding in living cells.” Biophys. J., 2004, pp. 87:3518–3524.

[3-16] Feder, T. J., Brust-Mascher, I., Slattery, J. P., Baird B., and Webb W. W., “Constrained diffusion or immobile fraction on cell surfaces: a new interpretation”, Biophysical Journal 1996, pp.70:2767–2773.

[3-17] Segre, P. N., and Pusey, P. N., “Scaling of the dynamic scattering function of concentrated colloidal suspensions”, Physical Review Letters, vol.77, 1996, pp .771–774

[3-18] Thompson, N. L.,” Fluorescence correlation spectroscopy. In Topics in Fluorescence Spectroscopy. J. R. Lakowicz, editor. Plenum Press, New York, 1991, pp. 337–378.

[3-19] Elson, E. L., Magde, D., “Fluorescence Correlation Spectroscopy I. Conceptual Basis and Theory”, Biopolymers, 1974, pp.13:1–27.

[3-20] Scott, K.,” Electrochemical processes for clean technology”. Cambridge, UK: The Royal Society of Chemistry, 1995, pp. 12– 62.

[3-21] de Grotthuss, C. J. T. "Sur la décomposition de l'eau et des corps qu'elle tient en dissolution à l'aide de l'électricité galvanique". Annali Di Chimica, vol.58,1806, pp. 54–73.

[3-22] IUPAC Compendium of Chemical Terminology, 2nd ed. (the "Gold Book"). Compiled by A. D. McNaught and A. Wilkinson. Blackwell Scientific Publications, Oxford (1997). XML on-line corrected version: http://goldbook.iupac.org (2006) created by M. Nic, J. Jirat, B. Kosata; updates compiled by A. Jenkins

[3-23] Chen, X., Chen, G., You, P., “Investigation on the electrolysis voltage of electrocoagulation”, Chemical Engineering Science, vol. 57, 2002, pp. 2449 – 2455

[3-24] Gallagher, K., G., Fuller, T. F., “Kinetic model of the electrochemical oxidation of graphitic carbon in acidic environments”, Physical Chemistry Chemical Physics, vol.11, 2009, pp. 11557–11567

[3-25] Colmenares, L. C., Wurth, A., Jusys, Z., Behm, R. J., “Model study on the stability of carbon support materials under polymer electrolyte fuel cell cathode operation conditions”, Journal of Power Sources, vol. 190, Issue 1, 2009, pp. 14-24

[3-26] Kangasniemia, K. H., Conditb, D. A., and Jarvic, T. D., “Characterization of Vulcan Electrochemically Oxidized under Simulated PEM Fuel Cell Conditions”, Journal of Electrochemical Society, vol. 151 , 2004, issue 4, pp. E125-E132.

[3-27] Kinoshita K., Bett J. A. S., “Potentiodynamic analysis of surface oxides on carbon blacks”, Carbon Journal, Elsevier Publishing (1973), vol. 11, 1973, Issue 4, pp. 403-411.

[3-28] Leon y Leon, C. A., Radovic, L. R., “Interfacial Chemistry and Electrochemistry of Carbon Surfaces” Chemistry and Physics of Carbon, Thrower, P. A., Ed.; Marcel Dekker: New York, Vol. 24, 1994, pp. 213- 310.

[3-29] Zhang, H., Fei, C., Zhang, D., Tang, F., “Degradation of 4-nitrophenol in aqueous
medium by electro-Fenton method”, Journal of Hazardous Materials, 145, 2007, pp. 227–232.

[3-30] Bard, A. J., Faulkner, L. R., “Electrochemical Methods”, 1980, New York: Wiley. pp. 42-45.

[3-31] Bieniasz, L. K., “Use of dynamically adaptive grid techniques for the solution of electrochemical kinetic equations. Part 14: extension of the patch-adaptive strategy to time-dependent models involving migration–diffusion transport in one-dimensional space geometry, and its application to example transient experiments described by Nernst–Planck–Poisson equations”, Journal of Electroanalytical Chemistry, vol. 565 ,2004 , pp. 251–271,

[3-32] Moya, A. A., and Horno, J., “Application of the Network Simulation Method to Ionic Transport in Ion-Exchange Membranes Including Diffuse Double-Layer Effects”, Journal of Physical Chemistry B, 103 (49), 1999, pp. 10791–10799
[3-33] Fogler, H. S., “Elements of chemical reaction engineering”, Fifth edition, Pearson Education Prentice-Hall Publishing, January 2016.
[3-34] Kapałka, A., Fóti, G. ,Comninellis, C., Kinetic modelling of the electrochemical mineralization of organic pollutants for wastewater treatment, Journal of Applied Electrochemistry , vol. 38, Issue 1, 2008, pp 7–16.
[3-35] Li, L., Liu, Y., “Ammonia removal in electrochemical oxidation: Mechanism and pseudo-kinetics”, Journal of Hazardous Materials, vol. 161, 2009, Issues 2–3, pp. 1010-1016
Chapter 4

[4-1] Abbassi-Guendouz, A., Brockmann, D., Trably E., Dumas, C., Delgenès, J.P., Steyer J. P., Escudié, R., “Total solids content drives high solid anaerobic digestion via mass transfer limitation”, Bioresource Technology, vol. 111, 2012 , pp. 55–61.
[4-2] Sillanpää, M., Shestakova, M., “Electrochemical Water Treatment Methods; Fundamentals, Methods and Full Scale Applications”, 1st Edition, Butterworth-Heinemann Elsevier Publishing, 2017, pp. 95-96.
[4-3] Anglada, A., Urtiaga, A., Ortiz I., “Electrochemical Water Treatment Methods; Fundamentals -water treatment: fundamentals and review of applications”, Journal of Chemical Technology and Biotechnology, vol. 84, 2009, pp. 1747–1755
[4-4] Gabrielli, C., Huet, F., and Keddam, M., “Fluctuations in electrochemical systems. I. General theory on diffusion limited electrochemical reactions”, The Journal of Chemical Physics vol. 99, Issue 9, 1993, pp. 7232-7239
[4-5] Xu, J.J., Peng, Y., Bao, N., Xia, X., Chen,H., “Simple method for the separation and detection of native amino acids and the identification of electroactive and non-electroactive analytes”, Journal of Chromatography A, vol. 1095 , 2005, pp.193–196,
[4-6] Bennett, W. B., Lubin D. L., “Electrochemical cell having electrode additives”, Patent WO 2000030198 A1, Published in 25 May 2000, Application number PCT/US1999/026814.
[4-7] Ebrahiem, E. E., Al-Maghrabi, M. N., Mobarki A. R., “Removal of organic pollutants from industrial wastewater by applying photo-Fenton oxidation technology”, Arabian Journal of Chemistry, vol. 10, 2017, pp. S1674-S1679
[4-8] De Maubeugez, H. L., “Calculation of the Optimal Geometry of Electrochemical Cells Application to the Plating on Curved Electrodes”, Journal of The Electrochemical Society, 149 (8), 2002, C413-C422.
[4-9] Panizza, M., Cerisola, G., “Removal of organic pollutants from industrial wastewater by electrogenerated Fenton's reagent”, Water Research, vol. 35, 2001, Issue 16, pp. 3987-3992
[4-10] Lin, S., Chang, C., “Treatment of landfill leachate by combined electro-Fenton and sequencing batch reactor”, Water Research, Vol. 34, 2000, No. 17, pp. 4243-4249
[4-11] Rodkey F. L., “The effect of temperature on the Oxidation-Reduction Potential of the Diphosphopyridine Nucleotide System”, Journal of Biological Chemistry, vol. 234, 1959, pp. 188-190.
[4-12] Hamann C., H., Hamnett A., Vielstich W., “Electrochemistry; second, completely revised and updated edition”, 2nd edition, 2007, Wiley-VCH Verlag Gmbh & Co. KgaA
Chapter 5
[5-1] Szpyrkowicz, L., Naumczyk, J., Zilio-Grandi , F., “Electrochemical treatment of tannery wastewater using TiPt and Ti/Pt/Ir electrodes”, Water Research, vol. 29, Issue 2, 1995, pp. 517-524
[5-2] Barzykina, A. V., Tachiyab, M., “Diffusion-influenced reaction kinetics on fractal structures”, The Journal of Chemical Physics 99, 1995, 9591
[5-3] Rimpault, X., Chatelain, J.-F., Klemberg-Sapieha, J.E., Balazinski, M., “Tool wear and surface quality assessment of CFRP trimming using fractal analyses of the cutting force signals”, CIRP Journal of Manufacturing Science and Technology, vol. 16, 2017, pp. 72-80
[5-4] Rimpault, X., “Tool condition monitoring and surface topography analysis during the machining of CFRP composites” (PhD thesis), Polytechnique Montreal, Université de Montréal, Montréal, Canada, 2016
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Back to top Back to top