Login | Register

4D Printing: Design and Fabrication of Smooth Curved Surface Using Controlled Self-Folding


4D Printing: Design and Fabrication of Smooth Curved Surface Using Controlled Self-Folding

Deng, Dongping, Kwok, Tsz Ho ORCID: https://orcid.org/0000-0001-7240-1426 and Chen, Yong (2017) 4D Printing: Design and Fabrication of Smooth Curved Surface Using Controlled Self-Folding. Journal Of Mechanical Design, 139 (8). 081702.

Text (application/pdf)
JMD17_Smooth_Folding.pdf - Accepted Version
Available under License Spectrum Terms of Access.

Official URL: http://dx.doi.org/10.1115/1.4036996


Traditional origami structures fold along pre-defined hinges, and the neighboring facets of the hinges are folded to transform planar surfaces into three-dimensional (3D) shapes. In this study, we present a new self-folding design and fabrication approach that has no folding hinges and can build 3D structures with smooth curved surfaces. This four-dimensional (4D) printing method uses a thermal-response control mechanism, where a thermo shrink film is used as the active material and a photocurable material is used as the constraint material for the film. When the structure is heated, the two sides of the film will shrink differently due to the distribution of the constraint material on the film. Consequently, the structure will deform over time to a 3D surface that has no folding hinges. By properly designing the coated constraint patterns, the film can be self-folded into different shapes. The relationship between the constraint patterns and their correspondingly self-folded surfaces has been studied in the paper. Our 4D printing method presents a simple approach to quickly fabricate a 3D shell structure with smooth curved surfaces by fabricating a structure with accordingly designed material distribution.

Divisions:Concordia University > Gina Cody School of Engineering and Computer Science > Mechanical, Industrial and Aerospace Engineering
Item Type:Article
Authors:Deng, Dongping and Kwok, Tsz Ho and Chen, Yong
Journal or Publication:Journal Of Mechanical Design
Date:22 June 2017
Digital Object Identifier (DOI):10.1115/1.4036996
ID Code:983468
Deposited By: TSZ HO KWOK
Deposited On:05 Feb 2018 14:29
Last Modified:12 Jun 2018 00:00


[1] Tibbits S, 2014, “4D Printing: Multi-Material Shape Change”, Architectural Design. 84(1):116-21. doi:10.1002/ad.1710

[2] Ge Q, Dunn CK, Qi HJ, Dunn ML, 2014, “Active origami by 4D printing”, Smart Materials and Structures. 23(9):1-15. doi:10.1088/0964-1726/23/9/094007

[3] Kwok TH, Wang CCL, Deng D, Zhang Y, Chen Y, 2015, “4D Printing for Freeform Surfaces: Design Optimization of Origami Structures”, Journal of Mechanical Design. doi:10.1115/1.4031023

[4] Bakarich SE, Gorkin R, Panhuis Mih, Spinks GM, 2015, “4D Printing with Mechanically Robust, Thermally Actuating Hydrogels”, Macromolecular Rapid Communications; 36(12) :1211-1217. doi:10.1002/marc.201500079

[5] Mao Y, Yu K, Isakov MS, Wu J, Dunn ML, and Qi HJ, 2015, “Sequential Self-Folding Structures by 3D Printed Digital Shape Memory Polymers”, Sci. Rep. 5, 13616; doi: 10.1038/srep13616.

[6] Randall CL, Kalinin YV, Jamal M, Shah A, Gracias DH, 2011, “Self-folding immunoprotective cell encapsulation devices”, Nanomedicine: Nanotechnology, Biology, and Medicine; 7(6): 686-689. doi:10.1016/j.nano.2011.08.020

[7] Malachowski K, Jamal M, Jin Q, Polat B, Morris CJ, Gracias DH, 2014, “Self-Folding Single Cell Grippers”, Nano Letters. 14(7):4164-4170. doi:10.1021/nl500136a

[8] Breger JC, Yoon C, Xiao R, Kwag HR, Wang MO, Fisher JP, et al, 2015, “Self-folding thermomagnetically responsive soft microgrippers”, ACS applied materials & interfaces. 7(5):3398-3405. doi:10.1021/am508621s

[9] Guan J, He H, Lee LJ, Hansford DJ, 2007, “Fabrication of particulate reservoir-containing, capsulelike, and self-folding polymer microstructures for drug delivery”, Small. 3(3):412-418. doi:10.1002/smll.200600240

[10] Fernandes R, Gracias DH, 2012, “Self-folding polymeric containers for encapsulation and delivery of drugs”, Advanced Drug Delivery Reviews. 64(14):1579-1589. doi:10.1016/j.addr.2012.02.012

[11] He H., Guan J., Lee JL, 2006, “An oral delivery device based on self-folding hydrogels”, Journal of Controlled Release, 110(2), 339-346. doi:10.1016/j.jconrel.2005.10.017

[12] An B, Benbernou N, Demaine ED, Rus D, 2011, “Planning to fold multiple objects from a single self-folding sheet”, Robotica. 29(1):87-102. doi:10.1017/S0263574710000731

[13] Felton S, Tolley M, Demaine E, Rus D, Wood R, 2014, “Applied origami. A method for building self-folding machines”, Science (New York, N.Y.). 345(6197):644.

[14] Sun, X., Felton, S. M., Niiyama, R., Wood, R. J., Kim, S, 2015, “Self-folding and self-actuating robots: A pneumatic approach”, Paper presented at the 2015 IEEE International Conference on Robotics and Automation (ICRA), 3160-3165. doi:10.1109/ICRA.2015.7139634.

[15] Miyashita S, Guitron S, Ludersdorfer M, Sung CR, Rus D, 2015, “An untethered miniature origami robot that self-folds, walks, swims, and degrades”, Paper presented at the 2015 IEEE International Conference on Robotics and Automation (ICRA),1490-1496. doi:10.1109/ICRA.2015.7139386.

[16] Miyashita S, Meeker L, Tolley MT, Wood RJ, Rus D, 2014, “Self-folding miniature elastic electric devices”, Smart Materials and Structures. 23(9):1-9. doi:10.1088/0964-1726/23/9/094005

[17] Miyashita S, Meeker L, Gouldi M, Kawahara Y, Rus D, 2014, “Self-folding printable elastic electric devices: Resistor, capacitor, and inductor”, Paper presented at the 2014 IEEE International Conference on Robotics and Automation (ICRA), 1446-1453. doi:10.1109/ICRA.2014.6907042.

[18] Hayes GJ, Liu Y, Genzer J, Lazzi G, Dickey MD, 2014, “Self-Folding Origami Microstrip Antennas”, IEEE Transactions on Antennas and Propagation. 62(10):5416-5419. doi:10.1109/TAP.2014.2346188

[19] Peraza-Hernandez E, Hartl D, Galvan E, Malak R, 2013, “Design and Optimization of a Shape Memory Alloy-Based Self-Folding Sheet”, Journal of Mechanical Design. 135(11). doi:10.1115/1.4025382

[20] Peraza-Hernandez EA, Hartl DJ, Malak Jr RJ, 2013, “Design and numerical analysis of an SMA mesh-based self-folding sheet”, Smart Materials and Structures. 22(9):094008,1-17. doi:10.1088/0964-1726/22/9/094008

[21] Felton SM, Becker KP, Aukes DM, Wood RJ, 2015, “Self-folding with shape memory composites at the millimeter scale”, Journal of Micromechanics and Microengineering. 25(8). doi:10.1088/0960-1317/25/8/085004

[22] Ding Z, Wei P., Ziaie B, 2010, “Self-folding smart 3D microstructures using a hydrogel-parylene bilayer”, the 18th Biennial University/Government/Industry Micro/Nano Symposium ,doi:10.1109/UGIM.2010.5508914.

[23] Guan J, He H, Hansford DJ, Lee LJ, 2005, “Self-folding of three-dimensional hydrogel microstructures”, Journal of Physical Chemistry B 109 (49): 23134-7. doi:10.1021/jp054341g

[24] De Leon A, Barnes AC, Thomas P, O'Donnell J, Zorman CA, Advincula RC, 2014, “Transfer printing of self-folding polymer-metal bilayer particles”, ACS Applied Materials & Interfaces 6 (24): 22695-700. doi:10.1021/am5068172

[25] Pickett GT, 2007, “Self-folding origami membranes”, EPL (Europhysics Letters). 78(4):48003. doi:10.1209/0295-5075/78/48003

[26] Guo W, Li M, Zhou J, 2013, “Modeling programmable deformation of self-folding all-polymer structures with temperature-sensitive hydrogels”, Smart Materials and Structures. 22(11):115028,1-6. doi:10.1088/0964-1726/22/11/115028

[27] Liu Y, Boyles JK, Genzer J, Dickey MD, 2012, “Self-folding of polymer sheets using local light absorption”. Soft Matter, 8(6), 1764-1769. doi:10.1039/c1sm06564e

[28] Liu Y, Miskewicz M, Ecsuti MJ, Genzer J, Dickey MD, 2014, “Three-dimensional folding of prestrained polymer sheets via absorption of laser light”, J. Appl. Phys., 115, 204911. doi:10.1063/1.4880160

[29] Lee Y, Lee H, Hwang T, Lee J, Cho M, 2015, “Sequential Folding using Light-activated Polystyrene Sheet”, Sci. Rep. 5, 16544; doi: 10.1038/srep16544.

[30] Felton SM, Tolley MT, Shin B, Onal CD, Demaine ED, Rus D, Wood RJ, 2013, “Self-folding with shape memory composites”, Soft Matter. 9(32):7688-94. doi:10.1039/c3sm51003d

[31] Tolley MT, Felton SM, Miyashita S, Aukes D, Rus D, Wood RJ, 2014, “Self-folding origami: shape memory composites activated by uniform heating”, Smart Materials and Structures. 23(9):1-9. doi:10.1088/0964-1726/23/9/094006

[32] Deng D, Chen Y, 2015, “Origami-Based Self-Folding Structure Design and Fabrication Using Projection Based Stereolithography”, Journal of Mechanical Design (Transactions of the ASME). 137(2). doi:10.1115/1.4029066

[33] Yonekura, K., & Watanabe, O. 2014, “A shape parameterization method using principal component analysis in applications to parametric shape optimization”. Journal of Mechanical Design, 136(12), 121401. doi:10.1115/1.4028273

[34] Murray, A., J. Schmiedeler, and B. Korte, 2008, “Kinematic synthesis of planar, shape-changing rigid-body mechanisms”. ASME Journal of Mechanical Design, DOI: 10.1115/1.2829892

[35] Bouaziz S, Deuss M, Schwartzburg Y, Weise T, Pauly M. 2012. “Shape-up: shaping discrete geometry with projections”. Computer Graphics Forum. 31(5): 1657-1667. doi: 10.1111/j.1467-8659.2012.03171

[36] Xie W, Zhang Y, Wang C, Chung R. 2014. “Surface-from-gradients: an approach based on discrete geometry processing,” IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, 2014, pp. 2203-2210. doi: 10.1109/CVPR.2014.282

[37] Cignoni P, Rocchini C, Scopigno R. 1998. “Metro: Measuring error on simplified surfaces”. Computer Graphics Forum, 17: 167–174. doi:10.1111/1467-8659.00236

[38] Huang P, Deng D, Chen Y, 2013, “Modeling and fabrication of heterogeneous three-dimensional objects based on additive manufacturing”, 24th International SFF Symposium - An Additive Manufacturing Conference, SFF 2013. 2013:215-230

[39] Zhou C, Chen Y, Yang Z, Khoshnevis B, 2013, “Digital material fabrication using mask- mageprojection-based stereolithography”, Rapid Prototyping Journal. 19(3):153-65. doi:10.1108/13552541311312148

[40] Song X, Chen Y, Lee TW, Wu S, Cheng L, 2015, “Ceramic fabrication using Mask-ImageProjection-based Stereolithography integrated with tape-casting”, Journal of Manufacturing Processes. 20:456-64. doi:10.1016/j.jmapro.2015.06.022

[41] Xu K, Chen, Y. 2016, “Photocuring temperature study for curl distortion control in projection based Stereolithography”. Journal of Manufacturing Science and Engineering. 139(2): 021002. doi: 10.1115/1.4034305.
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Back to top Back to top