Login | Register

Comparing the Sensitivity of Bank Retreat to Changes in Biophysical Conditions between Two Contrasting River Reaches Using a Coupled Morphodynamic Model


Comparing the Sensitivity of Bank Retreat to Changes in Biophysical Conditions between Two Contrasting River Reaches Using a Coupled Morphodynamic Model

Rousseau, Yannick Y., Biron, Pascale M. and Van de Wiel, Marco J. (2018) Comparing the Sensitivity of Bank Retreat to Changes in Biophysical Conditions between Two Contrasting River Reaches Using a Coupled Morphodynamic Model. Water, 10 (4). p. 518. ISSN 2073-4441

Text (application/pdf)
water-Biron-2018.pdf - Published Version
Available under License Creative Commons Attribution.

Official URL: http://dx.doi.org/10.3390/w10040518


Morphodynamic models of river meandering patterns and dynamics are based on the premise that the integration of biophysical processes matching those operating in natural rivers should result in a better fit with observations. Only a few morphodynamic models have been applied to natural rivers, typically along short reaches, and the relative importance of biophysical parameters remains largely unknown in these cases. Here, a series of numerical simulations were run using the hydrodynamic solver TELEMAC-2D, coupled to an advanced physics-based geotechnical module, to verify if sensitivity to key biophysical conditions differs substantially between two natural meandering reaches of different scale and geomorphological context. The model was calibrated against observed measurements of bank retreat for a 1.5 km semi-alluvial meandering reach incised into glacial till (Medway Creek, Ontario, Canada) and an 8.6 km long sinuous alluvial reach of the St. François River (Quebec, Canada). The two river reaches have contrasting bed and bank composition, and they differ in width by one order of magnitude. Calibration was performed to quantify and contrast the contribution of key geotechnical parameters, such as bank cohesion, to bank retreat. Results indicate that the sensitivity to key geotechnical parameters is dependent on the biophysical context and highly variable at the sub-reach scale. The homogeneous sand-bed St. François River is less sensitive to cohesion and friction angle than the more complex Medway Creek, flowing through glacial-till deposits. The latter highlights the limits of physics-based models for practical purposes, as the amount and spatial resolution of biophysical parameters required to improve the agreement between simulation results and observations may justify the use of a reduced complexity modelling approach.

Divisions:Concordia University > Faculty of Arts and Science > Geography, Planning and Environment
Item Type:Article
Authors:Rousseau, Yannick Y. and Biron, Pascale M. and Van de Wiel, Marco J.
Journal or Publication:Water
  • Concordia Open Access Author Fund
  • National Sciences and Engineering Research Council of Canada (NSERC)
Digital Object Identifier (DOI):10.3390/w10040518
Keywords:river bank erosion; meandering; morphodynamics; geotechnical slope stability; model calibration
ID Code:983803
Deposited On:26 Apr 2018 16:58
Last Modified:26 Apr 2018 16:58


Rinaldi, M.; Mengoni, B.; Luppi, L.; Darby, S.E.; Mosselman, E. Numerical simulation of hydrodynamics and bank erosion in a river bend. Water Resour. Res. 2008, 44, W09428.

Tal, M.; Paola, C. Effects of vegetation on channel morphodynamics: Results and insights from laboratory experiments. Earth Surf. Proc. Landf. 2010, 35, 1014–1028.

Ham, D.; Church, M. Morphodynamics of an extended bar complex, Fraser River, British Columbia. Earth Surf. Proc. Landf. 2012, 37, 1074–1089.

Langendoen, E.J.; Mendoza, A.; Abad, J.D.; Tassi, P.; Wang, D.; Ata, R.; El kadi Abderrezzak, K.; Hervouet, J.-M. Improved numerical modelling of morphodynamics of rivers with steep banks. Adv. Water Resour. 2016, 93, 4–14.

Lai, Y.G.; Thomas, R.E.; Ozeren, Y.; Simon, A.; Greimann, B.P.; Wu, K. Coupling a Two-Dimensional Model with a Deterministic Bank Stability Model. In Proceedings of the ASCE World Environmental and Water Resources Congress, Albuquerque, NM, USA, May 20‒24, 2012; pp. 1290–1300.

Motta, D.; Abad, J.D.; Langendoen, E.J.; Garcia, M.H. A simplified 2D model for meander migration with physically-based bank evolution. Geomorphology 2012, 163, 10–25.

Midgley, T.L.; Fox, G.A.; Heeren, D.M. Evaluation of the bank stability and toe erosion model (BSTEM) for predicting lateral retreat on composite streambanks. Geomorphology 2012, 145, 107–114.

Lai, Y.G.; Thomas, R.E.; Ozeren, Y.; Simon, A.; Greimann, B.P.; Wu, K. Modeling of multilayer cohesive bank erosion with a coupled bank stability and mobile-bed model. Geomorphology 2015, 243, 116–129.

Peakall, J.; Ashworth, P.J.; Best, J.L. Meander-bend evolution, alluvial architecture, and the role of cohesion in sinuous river channels: A flume study. J. Sediment. Res. 2007, 77, 197–212.

Abernethy, B.; Rutherfurd, I.D. Where along a river’s length will vegetation most effectively stabilise stream banks? Geomorphology 1998, 23, 55–75.

Millar, R.G. Influence of bank vegetation on alluvial channel patterns. Water Resour. Res. 2000, 36, 1109–1118.

Rey, F.; Ballais, J.-L.; Marre, A.; Rovéra, G. Role of vegetation in protection against surface hydric erosion. C. R. Geosci. 2004, 336, 991–998.

Simon, A.; Collison, A.J.C. Quantifying the mechanical and hydrologic effects of riparian vegetation on streambank stability. Earth Surf. Proc. Landf. 2002, 27, 527–546.

Pollen-Bankhead, N.; Simon, A. Hydrologic and hydraulic effects of riparian root networks on streambank stability: Is mechanical root-reinforcement the whole story? Geomorphology 2010, 116, 353–362.

Parker, C.; Simon, A.; Thorne, C.R. The effects of variability in bank material properties on riverbank stability: Goodwin Creek, Mississippi. Geomorphology 2008, 101, 533–543.

Güneralp, I.; Marston, R.A. Process-form linkages in meander morphodynamics: Bridging theoretical modeling and real world complexity. Prog. Phys. Geog. 2012, 36, 718–746.

Güneralp, I.; Abad, J.D.; Zolezzi, G.; Hooke, J. Advances and challenges in meandering channels research. Geomorphology 2012, 163, 1–9.

Tal, M.; Paola, C. Dynamic single-thread channels maintained by the interaction of flow and vegetation. Geology 2007, 35, 347–350.

Braudrick, C.A.; Dietrich, W.E.; Leverich, G.T.; Sklar, L.S. Experimental evidence for the conditions necessary to sustain meandering in coarse-bedded rivers. Proc. Natl. Acad. Sci. USA 2009, 106, 16936–16941.

Van Dijk, A.M.; Tesk, R.; van de Lageweg, W.I.; Kleinhans, M.G. Effects of vegetation distribution on experimental river channel dynamics. Water Resour. Res. 2013, 49, 7558–7574.

Friedkin, J.F. A Laboratory Study of the Meandering of Alluvial Rivers; US Army Corps of Engineers Waterways Experiment Stations: Vicksburg, MS, USA, 1945.

Schumm, S.A.; Khan, H.R. Experimental study of channel patterns. Nature 1971, 233, 407–409.

Smith, C.E. Modeling high sinuosity meanders in a small flume. Geomorphology 1998, 25, 19–30.

Asahi, K.; Shimizu, Y.; Nelson, J.; Parker, G. Numerical simulation of river meandering with self-evolving banks. J. Geophys. Res. Earth Surf. 2013, 118, 1–22.

Van Dijk, W.M.; Van de Lageweg, W.I.; Kleinhans, M.G. Experimental meandering river with chute cutoffs. J. Geophys. Res. 2012, 117, F03023.

Ferreira da Silva, A.M.; Ebrahimi, M. Meandering morphodynamics: Insights from laboratory and numerical experiments and beyond. J. Hydraul. Eng. 2017, 143, 03117005.

Anderson, R.S.; Anderson, S.P. Rivers. In Geomorphology: The Mechanics and Chemistry of Landscapes; Anderson, R.S., Anderson, S.P., Eds.; Cambridge University Press: Cambridge, UK, 2010; ISBN 9780521519786.

Perucca, E.; Camporeale, C.; Ridolfi, L. Significance of the riparian vegetation dynamics on meandering river morphodynamics. Water Resour. Res. 2007, 43, W03430.

Duan, J.G.; Julien, P.Y. Numerical simulation of meandering evolution. J. Hydrol. 2010, 391, 34–46.

Mosselman, E. Morphological modelling of rivers with erodible banks. Hydrol. Proc. 1998, 12, 1357–1370.

Darby, S.E.; Alabyan, A.M.; Van de Wiel, M.J. Numerical simulation of bank erosion and channel migration in meandering rivers. Water Resour. Res. 2002, 38, 1163.

Evangelista, S.; Greco, M.; Iervolino, M.; Leopardi, A.; Vacca, A. A new algorithm for bank-failure mechanisms in 2D morphodynamic models with unstructured grids. Int. J. Sediment. Res. 2015, 30, 382–391.

Pittaluga, M.B.; Seminara, G. Nonlinearity and unsteadiness in river meandering: A review of progress in theory and modelling. Earth Surf. Proc. Landf. 2011, 36, 20–38.

Hervouet, J.-M. A high resolution 2-D dam-break model using parallelization. Hydrol. Proc. 2000, 14, 2211–2230.

Oreskes, N.; Belitz, K. Philosophical issues in model assessment. In Model Validation: Perspectives in Hydrological Science; Anderson, M.G., Bates, P.D., Eds.; Wiley: New York, NY, USA, 2001; pp. 23–41. ISBN 978-0-471-98572-3.

Mulligan, M.; Wainwright, J. Modelling and model building. In Environmental Modelling: Finding Simplicity in Complexity, 2nd ed.; Wainwright, J., Mulligan, M., Eds.; Wiley: New York, NY, USA, 2013; pp. 7–26. ISBN 978-1-118-35148-2.

Nelson, J.M.; Bennett, J.; Wiele, S.M. Flow and sediment-transport modeling. In Tools in Fluvial Geomorphology; Kondolf, G.M., Piégay, H., Eds.; Wiley: New York, NY, USA, 2003; pp. 539–576. ISBN 978-0-470-86832-4.

Darby, S.E.; Rinaldi, M.; Dapporto, S. Coupled simulations of fluvial erosion and mass wasting for cohesive river banks. J. Geophys. Res. 2007, 112.

Williams, R.D.; Brasington, J.; Hicks, D.M. Numerical modelling of braided river morphodynamics: Review and future challenges. Geogr. Compass 2016, 10, 102–127.

Thorne, C.R.; Tovey, N.K. Stability of composite river banks. Earth Surf. Proc. Landf. 1981, 6, 469–484.

Thorne, C.R. Processes and mechanisms of river bank erosion. In Gravel-Bed Rivers: Fluvial Processes, Engineering, and Management; Hey, R.D., Bathurst, J.C., Thorne, C.R., Eds.; Wiley: New York, NY, USA, 1982; pp. 227–270. ISBN 0471101397, 9780471101390

Pollen-Bankhead, N.; Simon, A.; Jaeger, K.; Wohl, E. Destabilization of streambanks by removal of invasive species in Canyon de Chelly National Monument, Arizona. Geomorphology 2009, 103, 363–374.

Abernethy, B.; Rutherfurd, I.D. The effect of riparian tree roots on the mass-stability of riverbanks. Earth Surf. Proc. Landf. 2000, 25, 921–937.

Hasegawa, K. Computer Simulation of the Gradual Migration of Meandering Channels. In Proceedings of the Hokkaido Branch, Japan Society of Civil Engineering; Japan Society of Civil Engineering: Tokyo, Japan, 1977; pp. 197–202. (In Japanese)

Ikeda, S.G.; Parker, G.; Sawai, K. Bend theory of river meanders: 1. Linear development. J. Fluid Mech. 1981, 112, 363–377.

Schwenk, J.; Lanzoni, S.; Foufoula-Georgiou, E. The life of a meander bend: Connecting shape and dynamics via analysis of a numerical model. J. Geophys. Res. Earth Surf. 2015, 120, 690–710.

Parker, G.; Shimizu, Z.; Wilkerson, G.V.; Eke, E.C.; Abad, J.D.; Lauer, J.W.; Paola, C.; Dietrich, W.E.; Voller, V.R. A new framework for modeling the migration of meandering rivers. Earth Surf. Proc. Landf. 2011, 36, 70–86.

Duan, J.G.; Wang, S.S.Y.; Jia, Y.F. The applications of the enhanced CCHE2D model to study the alluvial channel migration processes. J. Hydraul. Res. 2001, 39, 469–480

Jia, Y.; Zhang, Y.; Wang, S.S.Y. Simulating Bank Erosion Process Using a Depth Averaged Computational Model. Presented at the 7th IAHR Symposium on River, Coastal and Estuarine Morphodynamics, Beijing, China, 9 June–9 August 2011.

Camporeale, C.; Perucca, E.; Ridolfi, L.; Gurnell, A.M. Modeling the interactions between river morphodynamics and riparian vegetation. Rev. Geophys. 2013, 51, 379–414.

Riadh, A.; Goeury, C.; Hervouet, J.-M. Telemac Modelling System: TELEMAC-2D Software v7.0 User's Manual; Recherche et développement, Électricité de France: Chatou, France, 2014

Tassi, P.; Villaret, C. Sisyphe v6.3 User's Manual; Recherche et développement, Électricité de France: Chatou, France, 2014.

EDF-R&D. Open TELEMAC-MASCARET. Available online: http://www.opentelemac.org (accessed on 5 April 2018).

Rousseau, Y.Y.; Biron, P.M.; Van de Wiel, M.J. Simulating bank erosion over an extended natural sinuous river reach using a universal slope stability algorithm coupled with a morphodynamic model. Geomorphology 2017, 295, 690–704

Tremblay, M. Caractérisation de la Dynamique des Berges de Deux Tributaires Contrastés du Saint-Laurent: Le cas des Rivières Batiscan et Saint-François. Master’s Thesis, Université de Montréal, Montréal, QC, Canada, 2012.

Verhaar, P.M.; Biron, P.M.; Ferguson, R.I.; Hoey, T.B. Numerical modelling of climate change impacts on Saint-Lawrence River tributaries. Earth Surf. Proc. Landf. 2010, 35, 1184–1198.

Boyer, C.; (Université de Montréal, Montréal, QC, Canada). Personal communication, 2012.
University of Western Ontario. Light Detection and Ranging (LiDAR) (Last Pulse) Digitation Elevation Model; University of Western Ontario: London, ON, Canada, 2006.

Galland, J.-C.; Goutal, N.; Hervouet, J.-M. TELEMAC: A new numerical model for solving shallow water equations. Adv. Water Resour. 1991, 14, 138–148.

Smagorinsky, J. General circulation experiments with the primitive equations. Mon. Weather Rev. 1963, 91, 99–164

Meyer-Peter, E.; Müller, R. Formulae for Bed-Load Transport; IAHR: Stockholm, Sweden, 1948; pp. 39–64.

Villaret, C. SISYPHE 6.0 User Manual (H-P73-2010-01219-FR); National Hydraulic and Environment Laboratory: Chatou, France, 2010.

Koch, F.G.; Flokstra, C. Bed Level Computations for Curved Alluvial Channels. In Proceedings of the XIXth Congress of the International Association for Hydraulic Research, New Delhi, India, 2‒7 February 1981; p. 11.

Li, Y.C.; Chen, Y.M.; Zhan, T.L.T.; Ling, D.S.; Cleall, P.J. An efficient approach for locating the critical slip surface in slope stability analyses using a real-coded genetic algorithm. Can. Geotech. J. 2010, 47, 806–820.

Bishop, A.W. The use of the slip circle in the stability analysis of slopes. Géotechnique 1955, 5, 7–17.

Rousseau, Y.Y.; Biron, P.M.; Van de Wiel, M.J. Sensitivity of simulated flow fields and bathymetries in meandering channels to the choice of a morphodynamic model. Earth Surf. Proc. Landf. 2016, 41, 1169–1184.

CHC. Blue Kenue Reference Manual; Canadian Hydraulics Centre: Ottawa, ON, Canada, 2011.

Vidal, J.-P.; Moisan, S.; Faure, J.-B.; Dartus, D. River model calibration, from guidelines to operational support tools. Environ. Model. Softw. 2007, 22, 1628–1640.

Arcement, G.J.; Schneider, V.R. Guide for Selecting Manning's Roughness Coefficients for Natural Channels and Floodplains; U.S. Geological Survey Water-Supply Paper 2339; Department of the Interior, U.S. Geological Survey: Denver, CO, USA, 1989

Liaw, A.; Wiener, M. Package randomForest—Breiman and Cutler’s Random Forest for Classification, Version 4.6-12. Available online: https://cran.r-project.org/web/packages/randomForest/randomForest.pdf (accessed on 20 April 2018).

Therneau, T.; Atkinson, B.; Ripley, B. rPart—Recursive Partitioning and Regression Trees, Version 4.1-13. Available online: https://cran.r-project.org/web/packages/rpart/rpart.pdf (accessed on 20 April 2018).

Youden, W.J. Index of rating diagnostic tests. Cancer 1950, 3, 32–35

The R Foundation. The R Project for Statistical Computing. Available online: https://www.r-project.org (accessed on 4 April 2018).

Abernethy, B.; Rutherfurd, I.D. The distribution and strength of riparian tree roots in relation to riverbank reinforcement. Hydrol. Proc. 2001, 15, 63–79.

Pollen-Bankhead, N.; Simon, A. Enhanced application of root-reinforcement algorithms for bank-stability modeling. Earth Surf. Proc. Landf. 2009, 34, 471–480.
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Back to top Back to top