Login | Register

Design, analysis, and optimization of photonic crystal Sensors

Title:

Design, analysis, and optimization of photonic crystal Sensors

Safdari, Mohammad Javad (2018) Design, analysis, and optimization of photonic crystal Sensors. Masters thesis, Concordia University.

[thumbnail of Safdari_MSc_F2018.pdf]
Preview
Text (application/pdf)
Safdari_MSc_F2018.pdf - Accepted Version
10MB

Abstract

It has been more than 30 years that Photonic Crystal (PhC) have been used in wide variety of applications. The photonic bandgap phenomenon and the flexibility of such structures to manipulate the light have made them popular. PhC sensors are popular because of their promising characteristics like high measurement sensitivity, ultra-compact size, suitability for monolithic integration, and flexibility in structural design. In this thesis, a novel framework for designing optimized PhC sensors has been proposed. The complexity of such structures resulted in the lack of an analytical method to design the structures. Therefore, this framework aims to provide a comprehensive and automatic method to find the best values for the structural parameters without human involvement. The framework is explained with an example of designing a PhC liquid sensor. In the framework, an optimizer called Multi-Objective Gray Wolf Optimizer is utilized. However, a diverse range of multi-objective optimizer algorithms could be utilized. The results show that the proposed framework can design any kind of PhC sensor. Simplicity, being straightforward, and no human involvement are the advantages of the proposed framework. In addition, a significantly wide range of optimal designs will be found which are suitable for general and specific applications.

Divisions:Concordia University > Gina Cody School of Engineering and Computer Science > Electrical and Computer Engineering
Item Type:Thesis (Masters)
Authors:Safdari, Mohammad Javad
Institution:Concordia University
Degree Name:M.A. Sc.
Program:Electrical and Computer Engineering
Date:31 June 2018
Thesis Supervisor(s):Zhang, John Xiupu and Bianucci, Pablo
Keywords:Photonic crystal, Photonic crystal waveguides, PhC Liquid Sensors, Waveguide filtering devices
ID Code:984009
Deposited By: Mohammad Javad Safdari
Deposited On:16 Nov 2018 16:18
Last Modified:16 Nov 2018 16:18

References:

[1] K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: New layer-by-layer periodic structures,” Solid State Commun., vol. 89, no. 5, pp. 413–416, 1994.
[2] E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett., vol. 58, no. 20, pp. 2059–2062, 1987.
[3] S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett., vol. 58, no. 23, pp. 2486–2489, 1987.
[4] Lord Rayleigh, “XXVI. On the remarkable phenomenon of crystalline reflexion described by Prof. Stokes,” London, Edinburgh, Dublin Philos. Mag. J. Sci., vol. 26, no. 160, pp. 256–265, 1888.
[5] V. P. Bykov, “Spontaneous emission in a periodic structure,” Sov. J. Exp. Theor. Phys., vol. 35, p. 269, 1972.
[6] S. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature, vol. 394, no. 6690, p. 251, 1998.
[7] V. P. Bykov, “Spontaneous emission from a medium with a band spectrum,” Sov. J. Quantum Electron., vol. 4, no. 7, p. 861, 1975.
[8] K. Ohtaka, “Energy band of photons and low-energy photon diffraction,” Phys. Rev. B, vol. 19, no. 10, p. 5057, 1979.
[9] P. Viktorovitch, E. Drouard, M. Garrigues, J. L. Leclercq, X. Letartre, P. R. Romeo, and C. Seassal, “Photonic crystals: basic concepts and devices,” Comptes Rendus Phys., vol. 8, no. 2, pp. 253–266, 2007.
[10] J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic crystals: molding the flow of light. Princeton university press, 2011.
[11] J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature, vol. 386, no. 6621, p. 143, 1997.
[12] A. Scherer, O. Painter, J. Vuckovic, M. Loncar, and T. Yoshie, “Photonic crystals for confining, guiding, and emitting light,” IEEE Trans. Nanotechnol., vol. 99, no. 1, pp. 4–11, 2002.
[13] K. Fasihi, “High-contrast all-optical controllable switching and routing in nonlinear photonic crystals,” J. Light. Technol., vol. 32, no. 18, pp. 3126–3131, 2014.
[14] J. O’Brien and W. Kuang, “Photonic Crystal Lasers, Cavities and Waveguides,” 2018.
[15] T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett., vol. 87, no. 15, p. 151112, 2005.
[16] T. Baba, “Slow light in photonic crystals,” Nat. Photonics, vol. 2, no. 8, p. 465, 2008.
[17] Y. Zhao, Y.-N. Zhang, and Q. Wang, “Research advances of photonic crystal gas and liquid sensors,” Sensors Actuators B Chem., vol. 160, no. 1, pp. 1288–1297, 2011.
[18] W.-C. Lai, S. Chakravarty, X. Wang, C. Lin, and R. T. Chen, “On-chip methane sensing by near-IR absorption signatures in a photonic crystal slot waveguide,” Opt. Lett., vol. 36, no. 6, pp. 984–986, 2011.
[19] Y. Zhang, Y. Zhao, and Q. Wang, “Multi-component gas sensing based on slotted photonic crystal waveguide with liquid infiltration,” Sensors Actuators B Chem., vol. 184, pp. 179–188, 2013.
[20] Y. Zhang, Y. Zhao, and Q. Wang, “Measurement of methane concentration with cryptophane E infiltrated photonic crystal microcavity,” Sensors Actuators B Chem., vol. 209, pp. 431–437, 2015.
[21] Y.-H. Chang, Y.-Y. Jhu, and C.-J. Wu, “Temperature dependence of defect mode in a defective photonic crystal,” Opt. Commun., vol. 285, no. 6, pp. 1501–1504, 2012.
[22] E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, “Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity,” Opt. Lett., vol. 29, no. 10, pp. 1093–1095, 2004.
[23] Y. Liu and H. W. M. Salemink, “All-optical on-chip sensor for high refractive index sensing in photonic crystals,” EPL (Europhysics Lett., vol. 107, no. 3, p. 34008, 2014.
[24] S. Zheng, B. Shan, M. Ghandehari, and J. Ou, “Sensitivity characterization of cladding modes in long-period gratings photonic crystal fiber for structural health monitoring,” Measurement, vol. 72, pp. 43–51, 2015.
[25] A. Casas-Bedoya, S. Shahnia, D. Di Battista, E. Mägi, and B. J. Eggleton, “Chip scale humidity sensing based on a microfluidic infiltrated photonic crystal,” Appl. Phys. Lett., vol. 103, no. 18, p. 181109, 2013.
[26] S. Zheng, Y. Zhu, and S. Krishnaswamy, “Fiber humidity sensors with high sensitivity and selectivity based on interior nanofilm-coated photonic crystal fiber long-period gratings,” Sensors Actuators B Chem., vol. 176, pp. 264–274, 2013.
[27] S. Zheng, Y. Zhu, and S. Krishnaswamy, “Nanofilm-coated photonic crystal fiber long-period gratings with modal transition for high chemical sensitivity and selectivity,” in Smart Sensor Phenomena, Technology, Networks, and Systems Integration 2012, 2012, vol. 8346, p. 83460D.
[28] C.-Y. Lin, H. Subbaraman, A. Hosseini, A. X. Wang, L. Zhu, and R. T. Chen, “Silicon nanomembrane based photonic crystal waveguide array for wavelength-tunable true-time-delay lines,” Appl. Phys. Lett., vol. 101, no. 5, p. 51101, 2012.
[29] A. Sopaheluwakan, “Defect states and defect modes in 1D photonic crystals,” MSc. Univ. Twente, Netherlands, 2003.
[30] C. Fenzl, T. Hirsch, and O. S. Wolfbeis, “Photonic crystals for chemical sensing and biosensing,” Angew. Chemie Int. Ed., vol. 53, no. 13, pp. 3318–3335, 2014.
[31] B. Li and C. Lee, “NEMS diaphragm sensors integrated with triple-nano-ring resonator,” Sensors Actuators A Phys., vol. 172, no. 1, pp. 61–68, 2011.
[32] D. Wang, Z. Yu, Y. Liu, X. Guo, C. Shu, S. Zhou, and J. Zhang, “Ultrasmall modal volume and high Q factor optimization of a photonic crystal slab cavity,” J. Opt., vol. 15, no. 12, p. 125102, 2013.
[33] Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature, vol. 425, no. 6961, p. 944, 2003.
[34] Y. Zhang, D. Li, C. Zeng, Z. Huang, Y. Wang, Q. Huang, Y. Wu, J. Yu, and J. Xia, “Silicon optical diode based on cascaded photonic crystal cavities,” Opt. Lett., vol. 39, no. 6, pp. 1370–1373, 2014.
[35] A. Majumdar, J. Kim, J. Vuckovic, and F. Wang, “Electrical control of silicon photonic crystal cavity by graphene,” Nano Lett., vol. 13, no. 2, pp. 515–518, 2013.
[36] C. Caër, X. Le Roux, and E. Cassan, “High-Q silicon-on-insulator slot photonic crystal cavity infiltrated by a liquid,” Appl. Phys. Lett., vol. 103, no. 25, p. 251106, 2013.
[37] D. Yang, H. Tian, and Y. Ji, “Nanoscale low crosstalk photonic crystal integrated sensor array,” IEEE Photonics J., vol. 6, no. 1, pp. 1–7, 2014.
[38] Y.-J. Fu, Y.-S. Lee, and S.-D. Lin, “Design and demonstration of high quality-factor H1-cavity in two-dimensional photonic crystal,” Opt. Lett., vol. 38, no. 22, pp. 4915–4918, 2013.
[39] Y. Yang, D. Yang, H. Tian, and Y. Ji, “Photonic crystal stress sensor with high sensitivity in double directions based on shoulder-coupled aslant nanocavity,” Sensors Actuators A Phys., vol. 193, pp. 149–154, 2013.
[40] Y.-N. Zhang, Y. Zhao, D. Wu, and Q. Wang, “Fiber Loop Ring-Down Refractive Index Sensor Based on High-$ Q $ Photonic Crystal Cavity,” IEEE Sens. J., vol. 14, no. 6, pp. 1878–1885, 2014.
[41] A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun., vol. 181, no. 3, pp. 687–702, 2010.
[42] A. C. S Jr, K. Z. Nobrega, H. E. Hernandez-Figueroa, and F. Di Pasquale, “PCFDT: An accurate and friendly photonic crystal fiber design tool,” Opt. J. Light Electron Opt., vol. 119, no. 15, pp. 723–732, 2008.
[43] Q. Yan, Z. Zhou, and X. S. Zhao, “Inward-growing self-assembly of colloidal crystal films on horizontal substrates,” Langmuir, vol. 21, no. 7, pp. 3158–3164, 2005.
[44] V. Berger, O. Gauthier-Lafaye, and E. Costard, “Photonic band gaps and holography,” J. Appl. Phys., vol. 82, no. 1, pp. 60–64, 1997.
[45] M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature, vol. 404, no. 6773, p. 53, 2000.
[46] O. D. Velev, T. A. Jede, R. F. Lobo, and A. M. Lenhoff, “Porous silica via colloidal crystallization,” Nature, vol. 389, no. 6650, p. 447, 1997.
[47] A. A. Zakhidov, R. H. Baughman, Z. Iqbal, C. Cui, I. Khayrullin, S. O. Dantas, J. Marti, and V. G. Ralchenko, “Carbon structures with three-dimensional periodicity at optical wavelengths,” Science (80-. )., vol. 282, no. 5390, pp. 897–901, 1998.
[48] A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, and J. P. Mondia, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature, vol. 405, no. 6785, p. 437, 2000.
[49] V. N. Astratov, Y. A. Vlasov, O. Z. Karimov, A. A. Kaplyanskii, Y. G. Musikhin, N. A. Bert, V. N. Bogomolov, and A. V Prokofiev, “Photonic band gaps in 3D ordered fcc silica matrices,” Phys. Lett. A, vol. 222, no. 5, pp. 349–353, 1996.
[50] R. Mayoral, J. Requena, J. S. Moya, C. López, A. Cintas, H. Miguez, F. Meseguer, L. Vázquez, M. Holgado, and Á. Blanco, “3D Long‐range ordering in ein SiO2 submicrometer‐sphere sintered superstructure,” Adv. Mater., vol. 9, no. 3, pp. 257–260, 1997.
[51] P. Jiang, J. F. Bertone, K. S. Hwang, and V. L. Colvin, “Single-crystal colloidal multilayers of controlled thickness,” Chem. Mater., vol. 11, no. 8, pp. 2132–2140, 1999.
[52] J. Vučković, M. Lončar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E, vol. 65, no. 1, p. 16608, 2001.
[53] T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics, vol. 1, no. 1, p. 49, 2007.
[54] T. Sünner, M. Gellner, A. Löffler, M. Kamp, and A. Forchel, “Group delay measurements on photonic crystal resonators,” Appl. Phys. Lett., vol. 90, no. 15, p. 151117, 2007.
[55] J. Hodgkinson and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol., vol. 24, no. 1, p. 12004, 2012.
[56] W. R. Seitz, “Chemical sensors based on fiber optics,” Anal. Chem., vol. 56, no. 1, p. 16A–34A, 1984.
[57] H. Awad, I. Hasan, K. Mnaymneh, T. J. Hall, and I. Andonovic, “Gas sensing using slow light in photonic crystal waveguides,” in Fibre and Optical Passive Components (WFOPC), 2011 7th Workshop on, 2011, pp. 1–3.
[58] Y. Zhao, Y. Zhang, and Q. Wang, “High sensitivity gas sensing method based on slow light in photonic crystal waveguide,” Sensors Actuators B Chem., vol. 173, pp. 28–31, 2012.
[59] A. Kumar, T. S. Saini, and R. K. Sinha, “Design and analysis of photonic crystal biperiodic waveguide structure based optofluidic-gas sensor,” Opt. J. Light Electron Opt., vol. 126, no. 24, pp. 5172–5175, 2015.
[60] A. K. Goyal, H. S. Dutta, and S. Pal, “Recent advances and progress in photonic crystal-based gas sensors,” J. Phys. D. Appl. Phys., vol. 50, no. 20, p. 203001, 2017.
[61] D. Benelarbi, T. Bouchemat, and M. Bouchemat, “Design of high-sensitive refractive index sensor using a ring-shaped photonic crystal waveguide,” Nanosci. Nanotechnol., vol. 6, no. 1A, pp. 105–109, 2016.
[62] A. Di Falco, L. O’Faolain, and T. F. Krauss, “Photonic crystal slotted slab waveguides,” Photonics Nanostructures-Fundamentals Appl., vol. 6, no. 1, pp. 38–41, 2008.
[63] A. Di Falco, L. O’Faolain, and T. F. Krauss, “Dispersion control and slow light in slotted photonic crystal waveguides,” Appl. Phys. Lett., vol. 92, no. 8, p. 83501, 2008.
[64] H. Aghababaeian, M.-H. Vadjed-Samiei, and N. Granpayeh, “Temperature stabilization of group index in silicon slotted photonic crystal waveguides,” J. Opt. Soc. Korea, vol. 15, no. 4, pp. 398–402, 2011.
[65] R. K. Gangwar and V. K. Singh, “Refractive index sensor based on selectively liquid infiltrated dual core photonic crystal fibers,” Photonics Nanostructures-Fundamentals Appl., vol. 15, pp. 46–52, 2015.
[66] A. K. Goyal and S. Pal, “Design and simulation of high sensitive photonic crystal waveguide sensor,” Opt. J. Light Electron Opt., vol. 126, no. 2, pp. 240–243, 2015.
[67] X. Wang, Z. Xu, N. Lu, J. Zhu, and G. Jin, “Ultracompact refractive index sensor based on microcavity in the sandwiched photonic crystal waveguide structure,” Opt. Commun., vol. 281, no. 6, pp. 1725–1731, 2008.
[68] D. F. Dorfner, T. Hürlimann, T. Zabel, L. H. Frandsen, G. Abstreiter, and J. J. Finley, “Silicon photonic crystal nanostructures for refractive index sensing,” Appl. Phys. Lett., vol. 93, no. 18, p. 181103, 2008.
[69] L. A. Shiramin, R. Kheradmand, and A. Abbasi, “High-sensitive double-hole defect refractive index sensor based on 2-D photonic crystal,” IEEE Sens. J., vol. 13, no. 5, pp. 1483–1486, 2013.
[70] J. Zhou, H. Tian, D. Yang, Q. Liu, and Y. Ji, “Integration of high transmittance photonic crystal H2 nanocavity and broadband W1 waveguide for biosensing applications based on Silicon-on-Insulator substrate,” Opt. Commun., vol. 330, pp. 175–183, 2014.
[71] L. Huang, H. Tian, D. Yang, J. Zhou, Q. Liu, P. Zhang, and Y. Ji, “Optimization of figure of merit in label-free biochemical sensors by designing a ring defect coupled resonator,” Opt. Commun., vol. 332, pp. 42–49, 2014.
[72] C. Caer, X. Le Roux, and E. Cassan, “Enhanced localization of light in slow wave slot photonic crystal waveguides,” Opt. Lett., vol. 37, no. 17, pp. 3660–3662, 2012.
[73] V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett., vol. 29, no. 11, pp. 1209–1211, 2004.
[74] T. Yamamoto, M. Notomi, H. Taniyama, E. Kuramochi, Y. Yoshikawa, Y. Torii, and T. Kuga, “Design of a high-Q air-slot cavity based on a width-modulated line-defect in a photonic crystal slab,” Opt. Express, vol. 16, no. 18, pp. 13809–13817, 2008.
[75] Y. N. Zhang, Y. Zhao, and R. Q. Lv, “A review for optical sensors based on photonic crystal cavities,” Sensors Actuators, A Phys., vol. 233, pp. 374–389, 2015.
[76] L. Huang, H. Tian, J. Zhou, Q. Liu, P. Zhang, and Y. Ji, “Label-free optical sensor by designing a high-Q photonic crystal ring–slot structure,” Opt. Commun., vol. 335, pp. 73–77, 2015.
[77] A. Di Falco, L. O’faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett., vol. 94, no. 6, p. 63503, 2009.
[78] S. Hamed Mirsadeghi, E. Schelew, and J. F. Young, “Photonic crystal slot-microcavity circuit implemented in silicon-on-insulator: High Q operation in solvent without undercutting,” Appl. Phys. Lett., vol. 102, no. 13, p. 131115, 2013.
[79] C. Caër, S. F. Serna-Otálvaro, W. Zhang, X. Le Roux, and E. Cassan, “Liquid sensor based on high-Q slot photonic crystal cavity in silicon-on-insulator configuration,” Opt. Lett., vol. 39, no. 20, pp. 5792–5794, 2014.
[80] P. Bing, J. Yao, Y. Lu, and Z. Li, “A surface-plasmon-resonance sensor based on photonic-crystal-fiber with large size microfluidic channels,” Opt. Appl, vol. 42, no. 3, pp. 493–501, 2012.
[81] B. Li, L. Jiang, S. Wang, Q. C. M. Wang, and J. Yang, “A new Mach-Zehnder interferometer in a thinned-cladding fiber fabricated by electric arc for high sensitivity refractive index sensing,” Opt. Lasers Eng., vol. 50, no. 6, pp. 829–832, 2012.
[82] G. Quero, A. Crescitelli, D. Paladino, M. Consales, A. Buosciolo, M. Giordano, A. Cutolo, and A. Cusano, “Evanescent wave long-period fiber grating within D-shaped optical fibers for high sensitivity refractive index detection,” Sensors Actuators B Chem., vol. 152, no. 2, pp. 196–205, 2011.
[83] R. Gao, Y. Jiang, W. Ding, Z. Wang, and D. Liu, “Filmed extrinsic Fabry–Perot interferometric sensors for the measurement of arbitrary refractive index of liquid,” Sensors Actuators B Chem., vol. 177, pp. 924–928, 2013.
[84] S. Romano, S. Torino, G. Coppola, S. Cabrini, and V. Mocella, “Optical sensors based on photonic crystal: A new route,” Proc. SPIE - Int. Soc. Opt. Eng., vol. 10231, 2017.
[85] J. B. Jensen, L. H. Pedersen, P. E. Hoiby, L. B. Nielsen, T. P. Hansen, J. R. Folkenberg, J. Riishede, D. Noordegraaf, K. Nielsen, and A. Carlsen, “Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions,” Opt. Lett., vol. 29, no. 17, pp. 1974–1976, 2004.
[86] Y. L. Hoo, W. Jin, C. Shi, H. L. Ho, D. N. Wang, and S. C. Ruan, “Design and modeling of a photonic crystal fiber gas sensor,” Appl. Opt., vol. 42, no. 18, pp. 3509–3515, 2003.
[87] A. Yariv and P. Yeh, Optical waves in crystals, vol. 5. Wiley New York, 1984.
[88] S. Chakravarty, J. Topol’ančik, P. Bhattacharya, S. Chakrabarti, Y. Kang, and M. E. Meyerhoff, “Ion detection with photonic crystal microcavities,” Opt. Lett., vol. 30, no. 19, pp. 2578–2580, 2005.
[89] W.-C. Lai, S. Chakravarty, Y. Zou, and R. T. Chen, “Silicon nano-membrane based photonic crystal microcavities for high sensitivity bio-sensing,” Opt. Lett., vol. 37, no. 7, pp. 1208–1210, 2012.
[90] M. Lee and P. M. Fauchet, “Two-dimensional silicon photonic crystal based biosensing platform for protein detection,” Opt. Express, vol. 15, no. 8, pp. 4530–4535, 2007.
[91] M. R. Lee and P. M. Fauchet, “Nanoscale microcavity sensor for single particle detection,” Opt. Lett., vol. 32, no. 22, pp. 3284–3286, 2007.
[92] S. Zlatanovic, L. W. Mirkarimi, M. M. Sigalas, M. A. Bynum, E. Chow, K. M. Robotti, G. W. Burr, S. Esener, and A. Grot, “Photonic crystal microcavity sensor for ultracompact monitoring of reaction kinetics and protein concentration,” Sensors Actuators B Chem., vol. 141, no. 1, pp. 13–19, 2009.
[93] F. Hsiao and C. Lee, “Computational study of photonic crystals nano-ring resonator for biochemical sensing,” IEEE Sens. J., vol. 10, no. 7, pp. 1185–1191, 2010.
[94] F.-L. Hsiao and C. Lee, “Nanophotonic biosensors using hexagonal nanoring resonators: computational study,” J. Micro/Nanolithography, MEMS, MOEMS, vol. 10, no. 1, p. 13001, 2011.
[95] F. Villa, L. E. Regalado, F. Ramos-Mendieta, J. Gaspar-Armenta, and T. Lopez-Ríos, “Photonic crystal sensor based on surface waves for thin-film characterization,” Opt. Lett., vol. 27, no. 8, pp. 646–648, 2002.
[96] M. Duneau, F. Delyon, and M. Audier, “Holographic method for a direct growth of three-dimensional photonic crystals by chemical vapor deposition,” J. Appl. Phys., vol. 96, no. 5, pp. 2428–2436, 2004.
[97] D. N. Sharp, A. J. Turberfield, and R. G. Denning, “Holographic photonic crystals with diamond symmetry,” Phys. Rev. B, vol. 68, no. 20, p. 205102, 2003.
[98] T. Senn, J. Bischoff, N. Nüsse, M. Schoengen, and B. Löchel, “Fabrication of photonic crystals for applications in the visible range by nanoimprint lithography,” Photonics Nanostructures-Fundamentals Appl., vol. 9, no. 3, pp. 248–254, 2011.
[99] B. Troia, A. Paolicelli, F. De Leonardis, and V. M. N. Passaro, “Photonic crystals for optical sensing: A review,” in Advances in Photonic Crystals, InTech, 2013.
[100] M. Fu, J. Liao, Z. Shao, M. Marko, Y. Zhang, X. Wang, and X. Li, “Finely engineered slow light photonic crystal waveguides for efficient wideband wavelength-independent higher-order temporal solitons,” Appl. Opt., vol. 55, no. 14, pp. 3740–3745, 2016.
[101] H. Sharifi, S. M. Hamidi, and K. Navi, “A new design procedure for all-optical photonic crystal logic gates and functions based on threshold logic,” Opt. Commun., vol. 370, pp. 231–238, 2016.
[102] M. Djavid and M. S. Abrishamian, “Multi-channel drop filters using photonic crystal ring resonators,” Optik - International Journal for Light and Electron Optics, vol. 123, no. 2. Elsevier GmbH., pp. 167–170, 2012.
[103] S. Robinson and R. Nakkeeran, “Two dimensional Photonic Crystal Ring Resonator based Add Drop Filter for CWDM systems,” Opt. - Int. J. Light Electron Opt., vol. 124, no. 18, pp. 3430–3435, 2013.
[104] A. Rostami, F. Nazari, H. A. Banaei, and A. Bahrami, “A novel proposal for DWDM demultiplexer design using modified-T photonic crystal structure,” Photonics Nanostructures - Fundam. Appl., vol. 8, no. 1, pp. 14–22, 2010.
[105] M. Youcef Mahmoud, G. Bassou, and A. Taalbi, “A new optical add–drop filter based on two-dimensional photonic crystal ring resonator,” Opt. - Int. J. Light Electron Opt., vol. 124, no. 17, pp. 2864–2867, 2013.
[106] H. Alipour-Banaei and F. Mehdizadeh, “Significant role of photonic crystal resonant cavities in WDM and DWDM communication tunable filters,” Opt. - Int. J. Light Electron Opt., vol. 124, no. 17, pp. 2639–2644, Sep. 2013.
[107] M. Djavid, F. Monifi, a. Ghaffari, and M. S. Abrishamian, “Heterostructure wavelength division demultiplexers using photonic crystal ring resonators,” Opt. Commun., vol. 281, no. 15–16, pp. 4028–4032, Aug. 2008.
[108] F. Mehdizadeh, H. Alipour-Banaei, and S. Serajmohammadi, “Channel-drop filter based on a photonic crystal ring resonator,” J. Opt., vol. 15, no. 7, p. 075401, Jul. 2013.
[109] H. Alipour-Banaei, F. Mehdizadeh, and M. Hassangholizadeh-Kashtiban, “A new proposal for PCRR-based channel drop filter using elliptical rings,” Phys. E Low-dimensional Syst. Nanostructures, vol. 56, pp. 211–215, Feb. 2014.
[110] C.-W. Kuo, C.-F. Chang, M.-H. Chen, S.-Y. Chen, and Y.-D. Wu, “A new approach of planar multi-channel wavelength division multiplexing system using asymmetric super-cell photonic crystal structures,” Opt. Express, vol. 15, pp. 198–206, 2007.
[111] Y. Liu and H. W. M. Salemink, “Sensitive All-Optical Channel-Drop Sensor in Photonic Crystals,” J. Light. Technol., vol. 33, no. 17, pp. 3672–3678, 2015.
[112] Y. Liu and H. W. M. Salemink, “Photonic crystal-based all-optical on-chip sensor,” Opt. Express, vol. 20, no. 18, p. 19912, Aug. 2012.
[113] U. P. Dharanipathy, M. Minkov, M. Tonin, V. Savona, and R. Houdré, “High-Q silicon photonic crystal cavity for enhanced optical nonlinearities,” Appl. Phys. Lett., vol. 105, no. 10, p. 101101, 2014.
[114] N. V. Triviño, M. Minkov, G. Urbinati, M. Galli, J.-F. Carlin, R. Butté, V. Savona, and N. Grandjean, “Gallium nitride L3 photonic crystal cavities with an average quality factor of 16 900 in the near infrared,” Appl. Phys. Lett., vol. 105, no. 23, p. 231119, 2014.
[115] M. Minkov and V. Savona, “Automated optimization of photonic crystal slab cavities.,” Sci. Rep., vol. 4, p. 5124, 2014.
[116] M. Djavid, S. A. Mirtaheri, and M. S. Abrishamian, “Photonic crystal notch-filter design using particle swarm optimization theory and finite-difference time-domain analysis,” J. Opt. Soc. Am. B, vol. 26, no. 4, pp. 849–853, 2009.
[117] L. Jiang, H. Wu, W. Jia, and X. Li, “Optimization of low-loss and wide-band sharp photonic crystal waveguide bends using the genetic algorithm,” Opt. - Int. J. Light Electron Opt., vol. 124, no. 14, pp. 1721–1725, Aug. 2013.
[118] S. M. Mirjalili, S. Mirjalili, and S. Z. Mirjalili, “How to design photonic crystal LEDs with artificial intelligence techniques,” Electron. Lett., vol. 51, no. 18, pp. 1437–1439, 2015.
[119] S. M. Mirjalili and S. Z. Mirjalili, “Asymmetric Oval-Shaped-Hole Photonic Crystal Waveguide design by Artificial Intelligence Optimizers,” IEEE J. Sel. Top. Quantum Electron., vol. 22, no. 2, p. 4900407, 2016.
[120] S. M. Mirjalili and S. Z. Mirjalili, “Full Optimizer for Designing Photonic Crystal Waveguides: IMoMIR framework,” IEEE Photonics Technol. Lett., vol. 27, no. 16, pp. 1776–1779, 2015.
[121] S. M. Mirjalili, “SoMIR framework for designing high-NDBP photonic crystal waveguides,” Appl. Opt., vol. 53, no. 18, pp. 3945–3953, 2014.
[122] S. M. Mirjalili, S. Mirjalili, and A. Lewis, “A Novel Multi-Objective Optimization Framework for Designing Photonic Crystal Waveguides,” Photonics Technol. Lett. IEEE, vol. 26, no. 2, pp. 146–149, 2014.
[123] S. Saremi, S. M. Mirjalili, and S. Mirjalili, “Unit Cell Topology Optimization of Line Defect Photonic Crystal Waveguide,” Procedia Technol., vol. 12, pp. 174–179, Jan. 2014.
[124] S. M. Mirjalili, K. Abedi, and S. Mirjalili, “Optical buffer performance enhancement using Particle Swarm Optimization in Ring-Shape-Hole Photonic Crystal Waveguide,” Opt. - Int. J. Light Electron Opt., vol. 124, no. 23, pp. 5989–5993, Dec. 2013.
[125] S. M. Mirjalili, K. Abedi, and S. Mirjalili, “Light property and optical buffer performance enhancement using particle swarm optimization in oblique ring-shape-hole photonic crystal waveguide,” in Photonics Global Conference (PGC), 2012, pp. 1–4.
[126] S. M. Mirjalili, S. Z. Mirjalili, and S. Mirjalili, “Multi-Objective Vs. Single-Objective Optimization Frameworks for Designing Photonic Crystal Filters,” Appl. Opt., vol. 56, no. 36, p. In press, 2017.
[127] S. M. Mirjalili and S. Z. Mirjalili, “Single-objective optimization framework for designing photonic crystal filters,” Neural Comput. Appl., vol. 28, no. 6, pp. 1463–1469, 2017.
[128] S. Guo and S. Albin, “Simple plane wave implementation for photonic crystal calculations,” Opt. Express, vol. 11, no. 2, pp. 167–175, Jan. 2003.
[129] A. Säynätjoki, M. Mulot, J. Ahopelto, and H. Lipsanen, “Dispersion engineering of photonic crystal waveguides with ring-shaped holes,” Opt. Express, vol. 15, no. 13, pp. 8323–8328, Jun. 2007.
[130] C. A. Coello Coello and M. S. Lechuga, “MOPSO: A proposal for multiple objective particle swarm optimization,” in Evolutionary Computation, 2002. CEC’02. Proceedings of the 2002 Congress on, 2002, vol. 2, pp. 1051–1056.
[131] S. Mirjalili, S. M. Mirjalili, and A. Hatamlou, “Multi-Verse Optimizer: a nature-inspired algorithm for global optimization,” Neural Comput. Appl., vol. 27, no. 2, pp. 495–513, 2016.
[132] S. Mirjalili, A. H. Gandomi, S. Z. Mirjalili, S. Saremi, H. Faris, and S. M. Mirjalili, “Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems,” Adv. Eng. Softw., p. In press, 2017.
[133] S. Mirjalili, S. Saremi, S. M. Mirjalili, and L. dos S. Coelho, “Multi-objective grey wolf optimizer: A novel algorithm for multi-criterion optimization,” Expert Syst. Appl., vol. 47, pp. 106–119, Apr. 2016.
[134] S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey Wolf Optimizer,” Adv. Eng. Softw., vol. 69, pp. 46–61, Mar. 2014.
[135] S. Saremi, S. Z. Mirjalili, and S. M. Mirjalili, “Evolutionary population dynamics and grey wolf optimizer,” Neural Comput. Appl., vol. 26, no. 5, pp. 1257–1263, 2015.
[136] H. Faris, I. Aljarah, M. A. Al-Betar, and S. Mirjalili, “Grey wolf optimizer: a review of recent variants and applications,” Neural Comput. Appl., pp. 1–23, 2017.
[137] S. M. Mirjalili, S. Mirjalili, A. Lewis, and K. Abedi, “A tri-objective Particle Swarm Optimizer for designing line defect Photonic Crystal Waveguides,” Photonics Nanostructures - Fundam. Appl., vol. 12, no. 2, pp. 152–163, Apr. 2014.
[138] J. Kennedy and R. Eberhart, “Particle swarm optimization,” Proc. ICNN’95 - Int. Conf. Neural Networks, vol. 4, pp. 1942–1948, 1995.
[139] R. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory,” MHS’95. Proc. Sixth Int. Symp. Micro Mach. Hum. Sci., pp. 39–43, 1995.
[140] L. D. Davis and M. Mitchell, “Handbook of Genetic Algorithms,” VAN NOSTRAND REINHOLD, vol. 15, no. 1, pp. 4–6, 1991.
[141] M. Notomi, T. Tanabe, A. Shinya, E. Kuramochi, and H. Taniyama, “On-Chip All-Optical Switching and Memory by Silicon Photonic Crystal Nanocavities,” Advances in Optical Technologies, vol. 2008. pp. 1–10, 2008.
[142] L. O’Faolain, T. P. White, D. O’Brien, X. Yuan, M. D. Settle, and T. F. Krauss, “Dependence of extrinsic loss on group velocity in photonic crystal waveguides.,” Opt. Express, vol. 15, no. 20, pp. 13129–13138, 2007.
[143] M. J. Safdari, S. M. Mirjalili, P. Bianucci, and X. Zhang, “Multi-objective optimization framework for designing photonic crystal sensors,” Appl. Opt., vol. 57, no. 8, p. 1950, 2018.
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top