Login | Register

Cognitive Involvement in Balance, Gait and Dual-Tasking in Aging: A Focused Review From a Neuroscience of Aging Perspective


Cognitive Involvement in Balance, Gait and Dual-Tasking in Aging: A Focused Review From a Neuroscience of Aging Perspective

Li, Karen Z. H., Bherer, Louis, Mirelman, Anat, Maidan, Inbal and Hausdorff, Jeffrey M. (2018) Cognitive Involvement in Balance, Gait and Dual-Tasking in Aging: A Focused Review From a Neuroscience of Aging Perspective. Frontiers in Neurology, 9 . ISSN 1664-2295

Text (application/pdf)
Li-Frontiers-2019.pdf - Published Version
Available under License Spectrum Terms of Access.

Official URL: http://dx.doi.org/10.3389/fneur.2018.00913


A substantial corpus of evidence suggests that the cognitive involvement in postural control and gait increases with aging. A large portion of such studies were based on dual-task experimental designs, which typically use the simultaneous performance of a motor task (e.g., static or dynamic balancing, walking) and a continuous cognitive task (e.g., mental arithmetic, tone detection). This focused review takes a cognitive neuroscience of aging perspective in interpreting cognitive motor dual-task findings. Specifically, we consider the importance of identifying the neural circuits that are engaged by the cognitive task in relation to those that are engaged during motor task performance. Following the principle of neural overlap, dual-task interference should be greatest when the cognitive and motor tasks engage the same neural circuits. Moreover, the literature on brain aging in general, and models of dedifferentiation and compensation, in particular, suggest that in cognitive motor dual-task performance, the cognitive task engages different neural substrates in young as compared to older adults. Also considered is the concept of multisensory aging, and the degree to which the age-related decline of other systems (e.g., vision, hearing) contribute to cognitive load. Finally, we discuss recent work on focused cognitive training, exercise and multimodal training of older adults and their effects on postural and gait outcomes. In keeping with the principle of neural overlap, the available cognitive training research suggests that targeting processes such as dividing attention and inhibition lead to improved balance and gait in older adults. However, more studies are needed that include functional neuroimaging during actual, upright performance of gait and balance tasks, in order to directly test the principle of neural overlap, and to better optimize the design of intervention studies to improve gait and posture.

Divisions:Concordia University > Faculty of Arts and Science > Psychology
Item Type:Article
Authors:Li, Karen Z. H. and Bherer, Louis and Mirelman, Anat and Maidan, Inbal and Hausdorff, Jeffrey M.
Journal or Publication:Frontiers in Neurology
  • Concordia Open Access Author Fund
  • Natural Sciences and Engineering Research Council of Canada
Digital Object Identifier (DOI):10.3389/fneur.2018.00913
Keywords:gait, balance, aging, cognitive training, dual task, cognition, motor-cognitive interference
ID Code:984951
Deposited On:31 Jan 2019 16:07
Last Modified:31 Jan 2019 16:07


1. Hausdorff JM, Rios DA, Edelberg HK. Gait variability and fall risk in
community-living older adults: a 1-year prospective study. Arch Phys Med Rehabil. (2001) 82:1050–6. doi: 10.1053/apmr.2001.24893

2. Tinetti ME, Speechley M, Ginter SF. Risk factors for falls among elderly persons living in the community. NEJM (1988) 319:1701–7. doi: 10.1056/NEJM198812293192604

3. Davis JC, Robertson MC, Ashe MC, Liu-Ambrose T, Khan KM, Marra CA. International comparison of cost of falls in older adults living in the community: a systematic review. Osteoporos Int. (2009) 8:1295–306. doi: 10.1007/s00198-009-1162-0

4. Hausdorff G, Yogev S, Springer S, Simon ES, Giladi N. Walking is more like catching than tapping: gait in the elderly as a complex cognitive task. Exp Brain Res. (2005) 164:541–8. doi: 10.1007/s00221-005-2280-3

5. Holtzer R, Verghese J, Xue X, Lipton RB. Cognitive processes related to gait velocity: results from the Einstein aging study. Neuropsychology 20:215–23. doi: 10.1037/0894-4105.20.2.215

6. Montero-Odasso M, Verghese J, Beauchet O, Hausdorff JM. Gait and cognition: a complementary approach to understanding brain function and the risk of falling. J Am Geriatr Soc. (2012) 60:2127–36. doi: 10.1111/j.1532-5415.2012.04209.x

7. Van Iersel MB, Kessels RP, Bloem BR, Verbeek AL, Olde Rikkert MG. Executive functions are associated with gait and balance in community-living elderly people. J Geront Biol Med Sci. (2008) 63:1344–9. doi: 10.1093/gerona/63.12.1344

8. Yogev-Seligmann G, Hausdorff JM, Giladi N. The role of executive function and attention in gait. Mov Dis. (2008) 23:329–42. doi: 10.1002/mds.21720

9. Seidler RD, Bernard JA, Burutolu TB, Fling BW, Gordon MT, Gwin JT, et al. Motor control and aging: links to age-related brain structural, functional, and biochemical effects. Neurosci Biobehav Rev. (2010) 34:721–33. doi: 10.1016/j.neubiorev.2009.10.005

10. Wittenberg E, Thompson J, Nam CS, Franz JR. Neuroimaging of human balance control: a systematic review. Front Hum Neurosci. (2017) 11:170. doi: 10.3389/fnhum.2017.00170

11. Park DC, Reuter-Lorenz P. The adaptive brain: aging and neurocognitive scaffolding. Ann Rev Psychol. (2009) 60:173–96. doi: 10.1146/annurev.psych.59.103006.093656

12. Cabeza R. Hemispheric asymmetry reduction in older adults: the HAROLD model. Psychol Aging (2002) 1:85–100. doi: 10.1037/0882-7974.17.1.85

13. Cabeza R, Nyberg L, Park D. Cognitive Neuroscience of Aging: Linking Cognitive and Cerebral Aging. New York, NY: Oxford University Press (2005).

14. Raz N, Rodrigue KM, Haacke EM. Brain aging and its modifiers. Ann N Y Acad Sci. (2007) 1097:84–93. doi: 10.1196/annals.1379.018

15. Raz N, Gunning FM, Head D, Dupuis JH, McQuain J, Briggs SD, et al. Selective aging of the human cerebral cortex observed in vivo: differential vulnerability of the prefrontal gray matter. Cereb Cortex (1997) 7:268–82.

16. Raz N, Lindenberger U, Rodrigue KM, Kennedy KM, Head D, Williamson A, et al. Regional brain changes in aging healthy adults: general trends, individual differences and modifiers. Cereb Cortex (2005) 15:1676–89. doi: 10.1093/cercor/bhi044

17. Davis SW, Dennis NA, Buchler NG, White LE, Madden DJ, Cabeza R. Assessing the effects of age on long white matter tracts using diffusion tensor tractography. Neuroimage (2009) 46:530–41. doi: 10.1016/j.neuroimage.2009.01.068

18. Daselaar SM, Iyengar V, Davis SW, Eklund K, Hayes SM, Cabeza RE. Less wiring, more firing: low-performing older adults compensate for impaired white matter with greater neutral activity. Cereb Cortex (2015) 25:983–90. doi: 10.1093/cercor/bht289

19. Davis SW, Kragel JE, Madden DJ, Cabeza R. The architecture of crosshemispheric communication in the aging brain: linking behavior to functional and structural connectivity. Cereb Cortex (2012) 22:232–42. doi: 10.1093/cercor/bhr123

20. Cabeza R, Grady CL, Nyberg L, McIntosh AR, Tulving E, Kapur S, et al. Agerelated differences in neural activity during memory encoding and retrieval: a positron emission tomography study. J Neurosci. (1997) 17:391–400.

21. Gutchess AH, Welsh RC, Hedden T, Bangert A, Minear M, Liu LL, et al. Aging and the neural correlates of successful picture encoding: frontal activations compensate for decreased medial-temporal activity. J Cogn Neurosci. (2005) 17:84–96. doi: 10.1162/0898929052880048

22. Cabeza R, Daselaar SM, Dolcos F, Prince SE, Budde M, Nyberg L. Taskindependent and task-specific age effects on brain activity during working memory, visual attention and episodic retrieval. Cereb Cortex (2004) 14:364–75. doi: 10.1093/cercor/bhg133

23. Wong PCM, Jin JX, Gunasekera GM, Abel R, Lee ER, Dhar S. Aging and cortical mechanisms of speech perception in noise. Neuropsychologia (2009) 47:693–703. doi: 10.1016/j.neuropsychologia.2008.11.032

24. Schneider BA, Pichora-Fuller MK. Implications of perceptual deterioration for cognitive aging research. In: Craik FIM, Salthouse TA, editors. The Handbook of Aging and Cognition 2nd Edn. Mahwah, NJ: Erlbaum. (2000). p. 155–219.

25. Mattay VS, Fera F, Tessitore A, Hariri AR, Berman KF, Weinberger DR. Neurophysiological correlates of age-related changes in working memory capacity. Neurosci Lett. (2006) 392:32–7. doi: 10.1016/j.neulet.2005.09.025

26. Park DC, Polk TA, Park R, Minear M, Savage A, Smith MR. Aging reduces neural specialization in ventral visual cortex. Proc Natl Acad Sci USA. (2004) 101:13091–5. doi: 10.1073/pnas.0405148101

27. Baltes PB, Lindenberger U. Emergence of a powerful connection between sensory and cognitive functions across the adult life span: a new window to the study of cognitive aging? Psychol Aging (1997) 12:12–21. doi: 10.1037/0882-7974.12.1.12

28. Li KZH, Lindenberger U. Relations between aging sensory/sensorimotor and cognitive functions. Neurosci Biobehav Rev. (2002) 26:777–83. doi: 10.1016/S0149-7634(02)00073-8

29. de Frias CM, Dixon RA, Strauss E. Structure of four executive functioning tests in healthy older adults. Neuropsychology (2006) 20:206–14. doi: 10.1037/0894-4105.20.2.206

30. Miyake A, Friedman NP, Emerson MJ, Witzki AH, Howerter A, Wagner T. The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: a latent variable analysis. Cogn Psychol. (2000) 41:49–100. doi: 10.1006/cogp.1999.0734

31. Andrews-Hanna JR, Snyder AZ, Vincent JL, Lustig C, Head D, Raichle ME, et al. Disruption of large-scale brain systems in advanced aging. Neuron (2007) 56:924–235. doi: 10.1016/j.neuron.2007.10.038

32. Sambataro F, Murty VP, Callicott JH, Tan H-Y, Das S, Weinberger DR, et al. Age-related alterations in default mode network: impact on working memory performance. Neurobiol Aging 31:839–52. doi: 10.1016/j.neurobiolaging.2008.05.022

33. Marstaller L, Williams M, Rich A, Savage G, Burianová H. Aging and large-scale functional networks: white matter integrity, gray matter volume, and functional connectivity in the resting state. Neuroscience (2015) 290:369–78. doi: 10.1016/j.neuroscience.2015.01.049

34. Grady C. The cognitive neuroscience of aging. Nat Rev Neurosci. (2012) 13:491–505. doi: 10.1038/nrn3256

35. Reuter-Lorenz PA, Park DC. How does it STAC up? Revisiting the scaffolding theory of aging and cognition. Neuropsychol Rev. (2014) 24:355–70. doi: 10.1007/s11065-014-9270-9

36. Lustig C, Shah P, Seidler R, Reuter-Lorenz PA. Aging, training, and the brain: a review and future directions. Neuropsychol Rev. (2009) 19:504–22. doi: 10.1007/s11065-009-9119-9

37. Hertzog C, Kramer AF, Wilson RS, Lindenberger U. Enrichment effects on adult cognitive development can the functional capacity of older adults be preserved and enhanced? Psychol Sci Public Interest (2008) 9:1–65. doi: 10.1111/j.1539-6053.2009.01034.x

38. Karbach J, Verhaeghen P. Making working memory work: a meta-analysis of executive-control and working memory training in older adults. Psychol Sci. (2014) 25:2027–37. doi: 10.1177/0956797614548725

39. Ball K, Berch DB, Helmers KF, Jobe JB, Leveck MD, Marsiske M, et al. Effects of cognitive training interventions with older adults — a randomized controlled trial. J Am Med Assoc. (2002) 288:2271–81. doi: 10.1001/jama.288.18.2271

40. Bherer L, Kramer AF, Peterson MS, Colcombe S, Erickson K, Becic E. Training effects on dual-task performance: Are there age-related differences in plasticity of attentional control? Psychol Aging 20:695–709. doi: 10.1037/0882-7974.20.4.695

41. Bherer L, Kramer AF, Peterson MS, Colcombe S, Erickson K, Becic E. Testing the limits of cognitive plasticity in older adults: application to attentional control. Acta Psychol. (2006) 123:261–78. doi: 10.1016/j.actpsy.2006. 01.005

42. Dahlin E, Neely AS, Larsson A, Backman L, Nyberg L. Transfer of learning after updating training mediated by the striatum. Science (2008) 320:1510–2. doi: 10.1126/science.1155466

43. Karbach J, Kray J. How useful is executive control training: age differences in near and far transfer of task-switching training? Dev Sci. (2009) 12:978–90. doi: 10.1111/j.1467-7687.2009.00846.x

44. Persson J, Reuter-Lorenz PA. Gaining control training executive function and far transfer of the ability to resolve interference. Psychol Sci. (2008) 19:881–8. doi: 10.1111/j.1467-9280.2008.02172.x

45. Kramer AF, Larish JF, Strayer DL. Training for attentional control in dual task settings: a comparison of young and old adults. J Exp Psychol Appl. (1995) 1:50–76.

46. Lussier M, Bugaiska A, Bherer L. Specific transfer effects following variable priority dual-task training in older adults. Restor Neurol Neurosci. 35:237–50. doi: 10.3233/RNN-150581

47. Silsupadol P, Siu KC, Shumway-Cook A, Woollacott MH. Training of balance under single- and dual-task conditions in older adults with balance impairment. Phys Ther. (2006) 86:269–81. doi: 10.1093/ptj/86.2.269

48. Li KZH, Krampe RT, Bondar A. An ecological approach to studying aging and dual-task performance. In: Engle RW, Sedek G, Von hecker U, McIntosh DN, editors. Cognitive Limitations in Aging and Psychopathology: Attention, Working Memory, and Executive Functions. Cambridge: Cambridge University Press (2005). p. 190–218. doi: 10.1017/CBO9780511720413.009

49. Salthouse TA, Hambrick DZ, Lukas KE, Dell TC. Determinants of adult age differences on synthetic work performance. J Exp Psychol Appl. (1996) 2:305–29.

50. Belleville S, Bherer L. Biomarkers of cognitive training effects in aging. Curr. Transl. Geriatr. Exp. Gerontol. Rep. 1:104–10. doi: 10.1007/s13670-012-0014-5

51. Lövden M, Bodammer NC, Kühn S, Kaufmann J, Schutze H, Tempelmann C, et al. Experience-dependent plasticity of white-matter microstructure extends into old age. Neuropsychologica (2010) 48:3878–83. doi: 10.1016/j.neuropsychologia.2010.08.026

52. Erickson KI, Colcombe SJ, Wadhwa R, Bherer L, Peterson MS, Scalf PE, et al. Training-induced functional activation changes in dual-task processing: an fMRI study. Cereb Cortex (2007) 17:192–204. doi: 10.1093/cercor/bhj137

53. Erickson KI, Colcombe SJ, Wadhwa R, Bherer L, Peterson MS, Scalf PE, et al. Training-induced plasticity in older adults: effects of training on hemispheric asymmetry. Neurobiol. Aging (2007) 28:272–83. doi: 10.1016/j.neurobiolaging.2005.12.012

54. Lampit A, Hallock H, Suo C, Naismith SL, Valenzuela M. Cognitive training-induced short-term functional and long-term structural plastic change is related to gains in global cognition in healthy older adults: a pilot study. Front Aging Neurosci. (2015) 7:14. doi: 10.3389/fnagi.2015.00014

55. Bherer L, Erickson KI, Liu-Ambrose T. Physical exercise and brain functions in older adults. J Aging Res. 2013:197326. doi: 10.1155/2013/197326

56. Colcombe S, Kramer AF. Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychol Sci. (2003) 14:125–30. doi: 10.1111/1467-9280.t01-1-01430

57. Albinet CT, Boucard G, Bouquet CA, Audiffren M. Increased heart rate variability and executive performance after aerobic training in the elderly. Eur J Appl Physiol. (2010) 109:617–24. doi: 10.1007/s00421-010-1393-y

58. Dustman RE, Ruhling RO, Russell EM, Shearer DE, Bonekat HW, Shigeoka JW, et al. Aerobic exercise training and improved neuropsychological function of older individuals. Neurobiol. Aging. (1984) 5:35–42.

59. Kramer AF, Hahn S, Cohen NJ, Banich MT, McAuley E, Harrison CR, et al. Ageing, fitness and neurocognitive function. Nature (1999) 400:418–9. doi: 10.1038/22682

60. Singh MAF, Gates N, Saigal N, Wilson GC, Meiklejohn J, Valenzuela M. The Study of Mental and Resistance Training (SMART) study – resistance training and/or cognitive training in mild cognitive impairment: a randomized, double-blind, double-sham controlled trial. J Am Med Direc Assn. (2014) 15:873–80. doi: 10.1016/j.jamda.2014.09.010

61. Colcombe SJ, Kramer AF, Erickson KI, Scalf P, McAuley E, Cohen NJ, et al. Cardiovascular fitness, cortical plasticity, and aging. Proc Natl Acad Sci USA. (2004) 101:3316–21. doi: 10.1073/pnas.0400266101

62. Colcombe SJ, Erickson KI, Scalf PE, Kim JS, Prakash R, McAuley E, et al. Aerobic exercise training increases brain volume in aging humans. J Gerontol A Biol Sci Med Sci. (2006) 61:1166–70. doi: 10.1093/gerona/61.11.1166

63. Voss MW, Heo S, Prakash RS, Erickson KI, Alves H, Chaddock L, et al. The influence of aerobic fitness on cerebral white matter integrity and cognitive function in older adults: results of a one-year exercise intervention. Hum Brain Mapp. (2013) 34:2972–85. doi: 10.1002/hbm.22119

64. Erickson KI, Hillman CH, Kramer AF. Physical activity, brain, and cognition. Curr Opin Behav Sci. (2015) 4:27–32. doi: 10.1016/j.cobeha.2015.01.005

65. Voss MW, Erickson KI, Prakash RS, Chaddock L, Kim JS, Alves H, et al. Neurobiological markers of exercise-related brain plasticity in older adults. Brain Behav Immun. (2013) 28:90–9. doi: 10.1016/j.bbi.2012.10.021

66. Zhu X, Yin S, Lang M, He R, Li J. The more the better? A meta-analysis on effects of combined cognitive and physical intervention on cognition in healthy older adults. Ageing Res Rev. (2016) 31:67–79. doi: 10.1016/j.arr.2016.07.003

67. Rahe J, Petrelli A, Kaesberg S, Fink GR, Kessler J, Kalbe E. Effects of cognitive training with additional physical activity compared to pure cognitive training in healthy older adults. Clin Interv Aging (2015) 10:297– 310. doi: 10.2147/CIA.S74071

68. Desjardins-Crépeau L, Berryman N, Fraser SA, Vu TTM, Kergoat M-J, Li KZH, et al. Effects of combined physical and cognitive training on fitness and neuropsychological outcomes in healthy older adults. Clin Interv Aging (2016) 11:1287–99. doi: 10.2147/CIA.S115711

69. Woollacott M, Shumway-Cook A. Attention and the control of posture and gait: a review of an emerging area of research. Gait Posture (2002) 16:1–14. doi: 10.1016/S0966-6362(01)00156-4

70. Brown LA, Sleik RJ, Polych MA, Gage WH. Is the prioritization of postural control altered in conditions of postural threat in younger and older adults? J Gerontol Med Sci. (2002) 57:M785–92. doi: 10.1093/gerona/57.12.M785

71. Brown LA, Shumway-Cook A, Woollacott MH. Attentional demands and postural recovery: the effects of aging. J Gerontol Med Sci. (1999) 54A:165–71.

72. Redfern MS, Müller MLTM, Jennings JR, Furman JM. Attentional dynamics in postural control during perturbations in young and older adults. J Gerontol Biol Sci. (2002) 57:B298–303. doi: 10.1093/gerona/57.8.B298

73. Maylor EA, Wing AM. Age differences in postural stability are increased by additional cognitive demands. J Gerontol Psychol Sci. (1996) 51B:P143–54.

74. Li KZH, Lindenberger U, Freund AM, Baltes PB. Walking while memorizing: age-related differences in compensatory behavior. Psychol Sci. (2001) 12:230–7. doi: 10.1111/1467-9280.00341

75. Lindenberger U, Marsiske M, Baltes PB. Memorizing while walking: increase in dual-task costs from young adulthood to old age. Psychol Aging (2000) 15:417–36. doi: 10.1037/0882-7974.15.3.417

76. Huxhold O, Li SC, Schmiedek F, Lindenberger U. Dual-tasking postural control: aging and the effects of cognitive demand in conjunction with focus of attention. Brain Res Bull. (2006) 69:294 305. doi: 10.1016/j.brainresbull.2006.01.002

77. Lövdén M, Schaefer S, Pohlmeyer AA, Lindenberger U. Walking variability and working-memory load in aging: a dual-process account relating cognitive control to motor control performance. J Gerontol Series B Psychol Sci Soc Sci. (2008) 63:P121–8. doi: 10.1093/geronb/63.3.P121

78. Nieborowska V, Lau ST, Campos J, Pichora-Fuller MK, Novak A, Li KZH. Effects of age on dual-task walking while listening. J Motor Behav. (2018). doi: 10.1080/00222895.2018.1498318

79. Bruce H, Aponte D, St-Onge N, Phillips N, Gagné J-P, Li KZH. The effects of age and hearing loss on dual-task balance and listening. J Gerontol Psychol Sci B (2017). doi: 10.1093/geronb/gbx047. [Epub ahead of print].

80. Lau ST, Pichora-Fuller MK, Li KZH, Singh G, Campos J. Effects of hearing loss on dual-task performance in an audiovisual virtual reality simulation of listening while walking. J Am Acad Audiol. 27:567–87. doi: 10.3766/jaaa.15115

81. Rosano C, Aizenstein HJ, Studenski S, Newman AB. A regions-of-interest volumetric analysis of mobility limitations in community-dwelling older adults. J Gerontol Med Sci. (2007) 62:1048–55. doi: 10.1093/gerona/62. 9.1048

82. Rosano C, Bennett DA, Newman AB, Venkatraman V, Yaffe K, Harris T, et al. Patterns of focal gray matter atrophy are associated with bradykinesia and gait disturbances in older adults. J Gerontol Series A (2012) 67:957–62. doi: 10.1093/gerona/glr262

83. Rosenberg-Katz K, Herman T, Jacob Y, Mirelman A, Giladi N, Hendler T, et al. Fall risk is associated with amplified functional connectivity of the central executive network in patients with Parkinson’s disease. J Neurol. (2015) 262:2448–56. doi: 10.1007/s00415-015-7865-6

84. Wajda DA, Mirelman A, Hausdorff JM, Sosnoff JJ. Intervention modalities for targeting cognitive-motor interference in individuals with neurodegenerative disease: a systematic review. Expert Rev Neurother. (2017) 17:251–61. doi: 10.1080/14737175.2016.1227704

85. Moscufo N, Guttmann CR, Meier D, Csapo I, Hildenbrand PG, Healy BC, et al. Brain regional lesion burden and impaired mobility in the elderly. Neurobiol Aging (2009) 32:646–54. doi: 10.1016/j.neurobiolaging.2009.04.010

86. Srikanth V, Phan TG, Chen J, Beare R, Stapleton JM, Reutens DC. The location of white matter lesions and gait-a voxel-based study. Ann Neurol. (2010) 67:265–9. doi: 10.1002/ana.21826

87. Bolandzadeh N, Liu-Ambrose T, Aizenstein H, Harris T, Launer L, Yaffe K, et al. Pathways linking regional hyperintensities in the brain and slower gait. NeuroImage (2014) 99:7–13. doi: 10.1016/j.neuroimage.2014.05.017

88. Fleischman DA, Yang J, Arfanakis K, Arvanitakis Z, Leurgans SE, Turner AD, et al. Physical activity, motor function, and white matter hyperintensity burden in healthy older adults. Neurology 84:1294–300. doi: 10.1212/WNL.0000000000001417

89. Ezzati A, Katz MJ, Lipton ML, Lipton RB, Verghese J. The association of brain structure with gait velocity in older adults: a quantitative volumetric analysis of brain MRI. Neuroradiology (2015) 57:851–61. doi: 10.1007/s00234-015-1536-2

90. Baezner H, Blahak C, Poggesi A, Pantoni L, Inzitari D, Chabriat H, et al. Association of gait and balance disorders with age-related white matter changes: the LADIS study. Neurology 70:935–42. doi: 10.1212/01.wnl.0000305959.46197.e6

91. Inzitari D, Simoni M, Pracucci G, Poggesi A, Chabriat H, Langhorne P. Risk of rapid global functional decline in elderly patients with severe cerebral age-related white matter changes. Arch Intern Med. (2007) 167:81–8. doi: 10.1001/archinte.167.1.81

92. Bruijn SM, Impe AV, Duysens J, Swinnen SP. White matter microstructural organization and gait stability in older adults. Front Aging Neurosci. (2014) 6:104. doi: 10.3389/fnagi.2014.00104

93. Holtzer R, Epstein N, Mahoney JR, Izzetoglu M, Blumen HM. Neuroimaging of mobility in aging: a targeted review. J Gerontol Series A Biol Sci Med Sci. (2014) 69:1375–88. doi: 10.1093/gerona/glu052

94. Leone C, Feys P, Moumdjian L, D’Amico E, Zappia M, Patti F. Cognitivemotor dual-task interference. A systematic review of neural correlates. Neurosci Biobeh Rev. (2017) 75:348–60. doi: 10.1016/j.neubiorev.2017.01.010

95. Miyai I, Tanabe HC, Sase I, Eda H, Oda I, Konishi I, et al. Cortical mapping of gait in humans: a near-infrared spectroscopic topography study. Neuroimage (2001) 14:1186–92. doi: 10.1006/nimg.2001.0905

96. Maidan I, Rosenberg-Katz K, Jacob Y, Giladi N, Deutsch JE, Hausdorff JM, et al. Altered brain activation in complex walking conditions in patients with Parkinson’s disease. Parkinsonims Relat Disord. (2016) 25:91–6. doi: 10.1016/j.parkreldis.2016.01.025

97. Yuan J, Blumen HM, Verghese J, Holtzer R. Functional connectivity associated with gait velocity during walking and walking-while-talking in aging: a resting-state fMRI study. Hum Brain Mapp. (2015) 36:1484–93. doi: 10.1002/hbm.22717

98. Arenth PM, Ricker JH, Schultheis MT. Applications of functional near-infrared spectroscopy (fNIRS) to neurorehabilitation of cognitive disabilities. Clin Neuropsychol. 21:38–57. doi: 10.1080/13854040600878785

99. Huppert TJ, Hoge RD, Diamond SG, Franceschini MA, Boas DA. A temporal comparison of BOLD, ASL, and NIRS hemodynamic responses to motor stimuli in adult humans. Neuroimage 29:368–82. doi: 10.1016/j.neuroimage.2005.08.065

100. Holtzer R, Mahoney JR, Izzetoglu M, Onaral B, Verghese J. fNIRS study of walking and walking while talking in young and old individuals. J Gerontol Med Sci. (2011) 66:879–87. doi: 10.1093/gerona/glr068

101. Holtzer R, Mahoney JR, Izzetoglu M, Wang C, England S, Verghese J. Online fronto-cortical control of simple and attention demanding locomotion in humans. Neuroimage (2015) 112:152–9. doi: 10.1016/j.neuroimage.2015.03.002

102. Mirelman A, Maidan I, Bernard-Elazari H, Nieuwhof F, Reelick M, Giladi N, et al. Increased frontal brain activation during walking while dual-tasking: an fNIRS study in healthy young adults. J NeuroEng Rehab. (2014) 11:1–7. doi: 10.1186/1743-0003-11-85

103. Fraser SA, Dupuy O, Pouliot P, Lesage F, Bherer L. Comparable
cerebral oxygenation patterns in younger and older adults during dual-task walking with increasing load. Front Aging Neurosci. (2016) 8:204.
doi: 10.3389/fnagi.2016.00240

104. Beurskens R, Helmich I, Rein R, Bock O. Age-related changes in prefrontal activity during walking in dual-task situations: a fNIRS study. Int J Psychophysiol. (2014) 92:122–8. doi: 10.1016/j.ijpsycho.2014.03.005

105. Lin CC, Barker JW, Sparto PJ, Furman JM, Huppert TJ. Functional near-infrared spectroscopy (fNIRS) brain imaging of multi-sensory integration during computerized dynamic posturography in middle-aged and older adults. Exp Brain Res. (2017) 235:1247–56. doi: 10.1007/s00221-017-4893-8

106. Costa A, Ianez E, Ubeda A, Hortal E, Del-Ama AJ, Gil-Agudo A, et al. Decoding the attentional demands of gait through EEG Gamma band features. PLoS ONE 11:e0154136. doi: 10.1371/journal.pone.0154136

107. Kaiser J, Lutzenberger W. Human gamma-band activity: a window to cognitive processing. Neuroreport (2005) 16:207–11. doi: 10.1097/00001756-200502280-00001

108. Little CE, Woollacott M. EEG measures reveal dual-task interference in postural performance in young adults. Exp Brain Res. 233:27–37. doi: 10.1007/s00221-014-4111-x

109. Quant S, Adkin AL, Staines WR, Maki BE, McIlroy WE. The effect of a concurrent cognitive task on cortical potentials evoked by unpredictable balance perturbations. BMC Neurosci. 5:18. doi: 10.1186/1471-2202-5-18

110. Wollesen B, Voelcker-Rehage C. Training effects on motor-cognitive dual-task performance in older adults. Eur Rev Aging Phys Act. 11:5–24. doi: 10.1007/s11556-013-0122-z

111. Silsupadol P, Lugade V, Shumway-Cook A, Van Donkelaar P, Chou L-S, Mayr U, et al. Training-related changes in dual-task walking performance of elderly persons with balance impairment: a double-blind, randomized controlled trial. Gait Posture (2009) 29:634–9. doi: 10.1016/j.gaitpost.2009.01.006

112. Wollesen B, Mattes K, Schulz S, Bischoff LL, Seydell L, Bell JW, et al. Effects of dual-task management and resistance training on gait performance in older individuals: a randomized controlled trial. Front Aging Neurosci. (2017) 9:415. doi: 10.3389/fnagi.2017.00415

113. Wongcharoen S, Sungkarat S, Munkhetvit P, Lugade V, Silsupadol P. Home-based interventions improve trained, but not novel, dual-task balance performance in older adults: a randomized controlled trial. Gait Posture (2017) 52:147–52. doi: 10.1016/j.gaitpost.2016.11.036

114. Li KZH, Roudaia E, Lussier M, Bherer L, Leroux A, McKinley P. Benefits of cognitive dual-task training on balance performance in healthy older adults. J Gerontol Series A Biol Sci Med Sci. (2010) 65:1344–52. doi: 10.1093/gerona/glq151

115. Verghese J, Mahoney J, Ambrose A, Wang C, Holtzer R. Effect of cognitive remediation on gait in sedentary seniors. J Gerontol Series A Biol Sci Med Sci. (2010) 65A:1338–43. doi: 10.1093/gerona/glq127

116. Smith-Ray RL, Hughes SL, Prohaska TR, Little DM, Jurivich DA, Hedeker D. Impact of cognitive training on balance and gait in older adults. J Gerontol B Psychol Sci Soc Sci. (2015) 70:357–66. doi: 10.1093/geronb/gbt097

117. Milman U, Atias H, Weiss A, Mirelman A, Hausdorff JM. Can cognitive remediation improve mobility in patients with Parkinson’s disease? findings from a 12 week pilot study. J. Parkinsons. Dis. (2014) 4:37–44. doi: 10.3233/JPD-130321

118. Auriel E, Hausdorff JM, Herman T, Simon ES, Giladi N. Effects of methylphenidate on cognitive function and gait in patients with Parkinson’s disease: a pilot study. Clin Neuropharmacol. (2006) 29:15–7. doi: 10.1097/00002826-200601000-00005

119. Ben-Itzhak R, Giladi N, Guendlinger L, Hausdorff JM. Can methylphenidate reduce fall risk in community living older adults? A double blind, single-dose cross-over study. J Am Ger Soc. (2008) 56:695–700. doi: 10.1111/j.1532-5415.2007.01623.x

120. Henderson EJ, Lord SR, Brodie MA, Gaunt DM, Lawrence AD, Ben-Shlomo Y. Rivastigmine for gait stability in patients with Parkinson’s disease (ReSPonD): a randomized, double-blind, placebo-controlled, phase 2 trial. Lancet Neurol. (2016) 15:249–58. doi: 10.1016/S1474-4422(15)00389-0

121. Segev-Jacubovski O, Herman T, Yogev-Seligmann G, Mirelman A, Giladi N, Hausdorff JM. The interplay between gait, falls and cognition: can cognitive therapy reduce fall risk? Exp Rev Neurother. (2011) 11:1057–75. doi: 10.1586/ern.11.69

122. Dagan M, Herman T, Harrison R, Zhou J, Giladi N, Ruffini G, et al. Multitarget transcranial direct current stimulation for freezing of gait in Parkinson’s disease. Mov Dis. (2018) 33:642–6. doi: 10.1002/mds.27300

123. Manor B, Zhou J, Jordan A, Zhang J, Fang J, Pascual-Leone A. Reduction of dual-task costs by noninvasive modulation of prefrontal activity in healthy elders. J Cogn Neurosci. (2016) 28:275–81. doi: 10.1162/jocn_a_00897

124. Manor B, Zhou J, Harrison R, Lo O-Y, Travison TG, Hausdorff JM, et al. Transcranial direct current stimulation may improve cognitive-motor function in functionally limited older adults. Neurorehabil Neural Repair (2018) 32:788–98. doi: 10.1177/1545968318792616

125. Zhou J, Hao Y, Wang Y, Jordan A, Pascual-Leone A, Zhang J, et al. Transcranial direct current stimulation (tDCS) reduces the cost of
performing a cognitive task on gait and postural control. Eur J Neurosci. (2014) 39:1343–8. doi: 10.1111/ejn.12492

126. Fraser SA, Li KZH, Berryman N, Desjardins-Crépeau L, Lussier M, Vadaga K, et al. Does combined physical and cognitive training improve dual-task balance and gait outcomes in sedentary older adults? Front Hum Neurosci. (2017) 10:688. doi: 10.3389/fnhum.2016.00688

127. Pothier K, Gagnon C, Fraser SA, Lussier M, Desjardins-Crépeau L, Berryman N, et al. A comparison of the impact of physical exercise, cognitive training and combined intervention on spontaneous walking speed in older adults. Aging Clin Exp Res. (2018) 30:921–5. doi: 10.1007/s40520-017-0878-5

128. Lai L, Bruce H, Bherer L, Lussier M, Li KZH. Comparing the transfer effects of simultaneous and sequential combined aerobic exercise and cognitive training in older adults. J Cogn Enhan. (2017) 1:478–90. doi: 10.1007/s41465-017-0052-1

129. Bruce H, Lai L, Bherer L, Lussier M, St-Onge N, Li KZH. The effect of simultaneously and sequentially delivered cognitive and aerobic training on mobility among older adults with hearing loss. Gait Posture (in press).

130. Jehu D, Paquet N, Lajoie Y. Balance and mobility training with or without concurrent cognitive training does not improve posture, but improves reaction time in healthy older adults. Gait Posture (2017) 52:227–32. doi: 10.1016/j.gaitpost.2016.12.006

131. Mirelman A, Rochester L, Maidan I, Del Din S, Nieuwhof F, Abbruzzese G. Addition of a non-immersive virtual reality component to treadmill training to reduce fall risk in older adults (V-TIME): a randomised controlled trial. Lancet (2016) 388:1170–82. doi: 10.1016/S0140-6736(16) 31325-3

132. Maidan I, Rosenberg-Katz K, Jacob Y, Giladi N, Deutsch JE, Hausdorff JM, et al. Disparate effects of training on brain activation in Parkinson’s disease. Neurology. (2017) 89:1804–10. doi: 10.1212/WNL.0000000000004576

133. Maidan I, Nieuwhof F, Bernad-Elazari H, Bloem B, Giladi N, Hausdorff JM, et al. Evidence of differential effects of 2 forms of exercise on prefrontal plasticity during walking in parkinson’s disease. Neruorehab Neural Repair (2018) 32:200–8. doi: 10.1177/1545968318763750
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Back to top Back to top