Login | Register

Wideband Printed Ridge Gap Rat-Race Coupler for Differential Feeding Antenna

Title:

Wideband Printed Ridge Gap Rat-Race Coupler for Differential Feeding Antenna

Afifi, Islam ORCID: https://orcid.org/0000-0001-6519-0915 and Sebak, Abdel Razik ORCID: https://orcid.org/0000-0003-1057-6735 (2020) Wideband Printed Ridge Gap Rat-Race Coupler for Differential Feeding Antenna. IEEE Access, 8 . pp. 78228-78235. ISSN 2169-3536

[img]
Preview
Text (application/pdf)
Afifi-IEEE Access-2020.pdf - Published Version
Available under License Creative Commons Attribution.
2MB

Official URL: http://dx.doi.org/10.1109/ACCESS.2020.2990169

Abstract

In this paper, a wideband 3 dB hybrid 180° rat-race coupler is introduced in the printed ridge gap waveguide technology. It has simultaneous wide matching and isolation bandwidth with low output amplitude imbalance. It operates in the millimeter wave band from 25.8 to 34.2 GHz (27.96%) with 15 dB return loss and isolation, and ±0.5 dB output amplitude imbalance. The proposed design employing an open stub at the middle of the 3λ/4 branch line and quarter wavelength lines at all the ports of the coupler. The objective of the added open stub is to separate the output ports amplitudes around the -3 dB level by certain values depending on the required amplitude imbalance. The analytical derivation for the role of the added open stub is presented along with a parametric study on its effect on amplitude imbalance, matching, and isolation. This results in having two intersection points for the output ports instead of one of the conventional coupler and hence the amplitude imbalance bandwidth increases. The objective of the added quarter wavelength lines is to improve the matching and isolation bandwidths. First, the conventional rat-race coupler is presented and a bandwidth of 14.25% at 30 GHz is achieved. After that the rat-race with the added quarter wavelength lines is presented to illustrate the objective of the added quarter wavelength lines and a bandwidth of 19.44% is achieved. Finally, the rat-race with the quarter wavelength lines and the added stub is presented and a prototype is fabricated and measured. The s-parameters measurements are in a good agreement with the simulated ones.

Divisions:Concordia University > Gina Cody School of Engineering and Computer Science > Electrical and Computer Engineering
Item Type:Article
Refereed:Yes
Authors:Afifi, Islam and Sebak, Abdel Razik
Journal or Publication:IEEE Access
Date:2020
Funders:
  • Concordia Open Access Author Fund
Digital Object Identifier (DOI):10.1109/ACCESS.2020.2990169
Keywords:Printed ridge gap, rat race coupler, millimeter wave components
ID Code:986928
Deposited By: KRISTA ALEXANDER
Deposited On:26 Jun 2020 14:17
Last Modified:26 Jun 2020 14:17

References:

1. D. M. Sheen, D. L. Mcmakin and T. E. Hall, "Three-dimensional millimeter-wave imaging for concealed weapon detection", IEEE Trans. Microw. Theory Techn., vol. 49, pp. 1581-1592, Sep. 2001.

2. H. Zamani and M. Fakharzadeh, "1.5-D sparse array for millimeter-wave imaging based on compressive sensing techniques", IEEE Trans. Antennas Propag., vol. 66, no. 4, pp. 2008-2015, Apr. 2018.

3. Z. Briqech and A.-R. Sebak, "Millimeter-wave imaging system using a 60 GHz dual-polarized AFTSA-SC probe", Proc. 33rd Nat. Radio Sci. Conf. (NRSC), pp. 325-332, Feb. 2016.

4. D. M. Sheen, J. L. Fernandes, J. R. Tedeschi, D. L. Mcmakin, A. M. Jones, W. M. Lechelt, et al., "Wide-bandwidth wide-beamwidth high-resolution millimeter-wave imaging for concealed weapon detection", Proc. SPIE, vol. 87150, pp. 871509-1-871509-11, May 2013.

5. A. U. Zaman, E. Rajo-Iglesias, E. Alfonso and P.-S. Kildal, "Design of transition from coaxial line to ridge gap waveguide", Proc. IEEE Antennas Propag. Soc. Int. Symp., pp. 1-4, Jun. 2009.

6. P. S. Kildal, "Three metamaterial-based gap waveguides between parallel metal plates for mm/submm waves", Proc. 3rd Eur. Conf. Antennas Propag., pp. 28-32, 2009.

7. P.-S. Kildal, A. U. Zaman, E. Rajo-Iglesias, E. Alfonso and A. Valero-Nogueira, "Design and experimental verification of ridge gap waveguide in bed of nails for parallel-plate mode suppression", IET Microw. Antennas Propag., vol. 5, no. 3, pp. 262-270, 2011.

8. H. Raza, J. Yang, P.-S. Kildal and E. A. Alos, "Microstrip-ridge gap waveguide–study of losses bends and transition to WR-15", IEEE Trans. Microw. Theory Techn., vol. 62, no. 9, pp. 1943-1952, Sep. 2014.

9. A. Beltayib and A.-R. Sebak, "Analytical design procedure for forward wave couplers in RGW technology based on hybrid PEC/PMC waveguide model", IEEE Access, vol. 7, pp. 119319-119331, 2019.

10. S. Birgermajer, N. Jankovic, V. Radonic, V. Crnojevic-Bengin and M. Bozzi, "Microstrip-ridge gap waveguide filter based on cavity resonators with mushroom inclusions", IEEE Trans. Microw. Theory Techn., vol. 66, no. 1, pp. 136-146, Jan. 2018.

11. A. Beltayib, I. Afifi and A.-R. Sebak, " \$4times4\$ -element cavity slot antenna differentially-fed by odd mode ridge gap waveguide ", IEEE Access, vol. 7, pp. 48185-48195, 2019.

12. I. Afifi, M. M. M. Ali and A. R. Sebak, "Analysis and design of a 30 GHz printed ridge gap Ring-crossover", Proc. USNC-URSI Radio Sci. Meeting (Joint AP-S Symp.), pp. 65-66, 2019.

13. M. M. M. Ali, S. I. Shams and A.-R. Sebak, "Printed ridge gap waveguide 3-dB coupler: Analysis and design procedure", IEEE Access, vol. 6, pp. 8501-8509, 2018.

14. M. M. M. Ali and A.-R. Sebak, "2-D scanning magnetoelectric dipole antenna array fed by RGW butler matrix", IEEE Trans. Antennas Propag., vol. 66, no. 11, pp. 6313-6321, Nov. 2018.

15. S. M. Sifat, M. M. M. Ali, S. I. Shams and A.-R. Sebak, "High gain bow-tie slot antenna array loaded with grooves based on printed ridge gap waveguide technology", IEEE Access, vol. 7, pp. 36177-36185, 2019.

16. A. T. Hassan and A. A. Kishk, "Efficient procedure to design large finite array and its feeding network with examples of ME-dipole array and microstrip ridge gap waveguide feed", IEEE Trans. Antennas Propag..

17. D. Il Kim and Y. Naito, "Broad-band design of improved hybrid-ring 3-dB directional couplers", IEEE Trans. Microw. Theory Techn., vol. MTT-30, no. 11, pp. 2040-2046, Nov. 1982.

18. S. March, "A wideband stripline hybrid ring (Correspondence)", IEEE Trans. Microw. Theory Techn., vol. MTT-16, no. 6, pp. 361, Jun. 1968.

19. R. Smolarz, K. Wincza and S. Gruszczynski, "Impedance transforming rat-race couplers with modified lange section", J. Electromagn. Waves Appl., vol. 32, no. 8, pp. 972-983, 2018.

20. M.-H. Murgulescu, P. Legaud, E. Moisan, E. Penard, M. Goloubkoff and I. Zaquine, "New small size wideband 180° ring couplers: Theory and experiment", Proc. 24th Eur. Microw. Conf., pp. 670-674, Sep. 1994.

21. C.-W. Kao and C. Hsiung Chen, "Novel uniplanar 180° hybrid-ring couplers with spiral-type phase inverters", IEEE Microw. Guided Wave Lett., vol. 10, no. 10, pp. 412-414, Oct. 2000.

22. C.-W. Kao and C. H. Chen, " Miniaturized uniplanar 180° hybrid-ring couplers with \$0.8~lambda_{g}\$ and \$0.67~lambda_{g}\$ circumferences ", Proc. Asia–Pacific Microw. Conf., pp. 217-220, 2000.

23. C.-H. Chi and C.-Y. Chang, "A compact wideband 180° hybrid ring coupler using a novel interdigital CPS inverter", Proc. Eur. Microw. Conf., pp. 548-551, 2007.

24. C.-Y. Chang and C.-C. Yang, "A novel broad-band chebyshev-response rat-race ring coupler", IEEE Trans. Microw. Theory Techn., vol. 47, no. 4, pp. 455-462, Apr. 1999.

25. J. Sorocki, I. Piekarz, K. Wincza and S. Gruszczynski, "Bandwidth improvement of rat-race couplers having left-handed transmission-line sections", Int. J. RF Microw. Comput.-Aided Eng., vol. 24, no. 3, pp. 341-347, May 2014.

26. D. Kholodnyak, P. Kapitanova, S. Humbla, R. Perrone, J. Mueller, M. A. Hein, et al., "180° power dividers using metamaterial transmission lines", Proc. 14th Conf. Microw. Techn., pp. 1-4, Apr. 2008.

27. K. Staszek, J. Kolodziej, K. Wincza and S. Gruszczynski, "Compact broadband rat-race coupler in multilayer technology designed with the use of artificial right- and left-handed transmission lines", J. Telecommun. Inf. Technol., no. 2, pp. 107-112, 2012.

28. J.-A. Hou and Y.-H. Wang, "Design of compact 90° and 180° couplers with harmonic suppression using lumped-element bandstop resonators", IEEE Trans. Microw. Theory Techn., vol. 58, no. 11, pp. 2932-2939, Nov. 2010.

29. G. Brzezina and L. Roy, "Miniaturized 180° hybrid coupler in LTCC for L-Band applications", IEEE Microw. Wireless Compon. Lett., vol. 24, no. 5, pp. 336-338, May 2014.

30. G. Slade, "Reduced-size octave-bandwidth microstrip/lumped-element rat-race coupler", Jun. 2008, [online] Available: https://www.researchgate.net/publication/229009635_Reduced-size_octavebandwidth_microstriplumped-element_rat-race_coupler.

31. I. Haroun, Y. C. Hsu, D. C. Chang and C. Plett, "A novel reduced-size 60-GHz 180° coupler using LG-CPW transmission lines", Proc. Asia–Pacific Microw. Conf., pp. 1750-1753, 2011.

32. S. Koziel and P. Kurgan, "On elementary cell selection for miniaturized microstrip rat-race coupler design", Proc. Int. Conf. Electromagn. Adv. Appl. (ICEAA), pp. 836-839, Sep. 2017.

33. K. V. Phani Kumar, R. K. Barik, I. S. Krishna and S. S. Karthikeyan, "Design of compact 180° hybrid coupler for unequal power division ratio using slow wave structures", Proc. 23rd Nat. Conf. Commun. (NCC), pp. 1-5, Mar. 2017.

34. K. Sen Ang, Y. Choy Leong and C. How Lee, "A new class of multisection 180° hybrids based on cascadable hybrid-ring couplers", IEEE Trans. Microw. Theory Techn., vol. 50, no. 9, pp. 2147-2152, Sep. 2002.

35. W. Che, K. Deng, E. K. N. Yung and K. Wu, "H-plane 3-dB hybrid ring of high isolation in substrate-integrated rectangular waveguide (SIRW)", Microw. Opt. Technol. Lett., vol. 48, no. 3, pp. 502-505, Mar. 2006.

36. R. Dehdasht-Heydari, K. Forooraghi and M. Naser-Moghadasi, "Efficient and accurate analysis of a substrate integrated waveguide (SIW) rat-race coupler excited by four U-shape slot-coupled transitions", Appl. Comput. Electromagn. Soc. J., vol. 30, no. 1, pp. 42-49, 2015.

37. X. Zou, C.-M. Tong, C.-Z. Li and W.-J. Pang, "Wideband hybrid ring coupler based on half-mode substrate integrated waveguide", IEEE Microw. Wireless Compon. Lett., vol. 24, no. 9, pp. 596-598, Sep. 2014.

38. Y. Ding and K. Wu, "Miniaturized hybrid ring circuits using T-type folded substrate integrated waveguide (TFSIW)", IEEE MTT-S Int. Microw. Symp. Dig., pp. 705-708, Jun. 2009.

39. A. A. M. Ali, H. B. El-Shaarawy and H. Aubert, "Miniaturized hybrid ring coupler using electromagnetic bandgap loaded ridge substrate integrated waveguide", IEEE Microw. Wireless Compon. Lett., vol. 21, no. 9, pp. 471-473, Sep. 2011.

40. J. Yang and H. Raza, "Empirical formulas for designing gap-waveguide hybrid ring coupler", Microw. Opt. Technol. Lett., vol. 55, no. 8, pp. 1917-1920, Aug. 2013.

41. I. Afifi, M. M. M. Ali and A.-R. Sebak, "Analysis and design of a wideband coaxial transition to metal and printed ridge gap waveguide", IEEE Access, vol. 6, pp. 70698-70706, 2018.

42. M. D. Pozar, Microwave Engineering, Hoboken, NJ, USA:Wiley, 2011.
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top