Login | Register

Mirror Symmetry is Subject to Crowding Across the Visual Field

Title:

Mirror Symmetry is Subject to Crowding Across the Visual Field

Roddy, Gabrielle (2011) Mirror Symmetry is Subject to Crowding Across the Visual Field. Masters thesis, Concordia University.

[thumbnail of Masters Thesis]
Preview
Text (Masters Thesis) (application/pdf)
Roddy_MA_F2011.pdf - Accepted Version
3MB

Abstract

Bilateral mirror symmetry is often thought to be particularly salient to human observers. It has been hypothesized that symmetry engages specialized mechanisms that evolved to sense symmetrical objects in nature. However, although symmetry is a commonly encountered stimulus property, studies have shown that sensitivity to mirror symmetry does not serve an alerting function when embedded in noise (Gurnsey et al., Can Soc Brain Behav Cog Sci, 1998b). Further, sensitivity to symmetry decreases
similarly to other common stimuli when targets are presented away from the centre of the visual field (for review: Wagemans, Spat Vis, 1995).
The three experiments presented in this thesis show that symmetrical targets are vulnerable to the same interference as other stimuli when surrounded by non-target elements. The data shares many of the common characteristics attributable to the crowding phenomenon in current and historical literature (for review: Whitney & Levi,
Trends Cog Sci, 2011). Namely, we find little or no effect of crowding at fixation. The magnitude of the crowding effect increased nonlinearly with eccentricity and at a greater rate than the linear increase of resolution loss (e.g., Gurnsey et al., JoV, 2011; Latham &
Whitaker, Ophthalmic Physiol Opt, 1996). In this case, standard double linear size scaling procedures were unable to characterize the data across the visual field and
produced untenable results that violate assumptions of the crowding phenomenon. Taken together, the results provide evidence that symmetry is unlikely to be processed in
parallel fashion by low-level mechanisms.

Divisions:Concordia University > Faculty of Arts and Science > Psychology
Item Type:Thesis (Masters)
Authors:Roddy, Gabrielle
Institution:Concordia University
Degree Name:M.A.
Program:Psychology
Date:26 August 2011
Thesis Supervisor(s):Gurnsey, Rick
Keywords:vision periphery symmetry crowding lateral inhibition visual field perception stimulus magnification fixation fovea masking
ID Code:35756
Deposited By: GABRIELLE RODDY
Deposited On:21 Nov 2011 16:14
Last Modified:18 Jan 2018 17:35

References:

Bach, M. (1996). The Freiburg Visual Acuity test: Automatic measurement of visual
acuity. Optometry Visual Science, 49-53. Retrieved from
http://www.michaelbach.de/fract/index.html
Barlow, H. B. & Reeves, B. C. (1979) The versatility and absolute efficiency of
detecting mirror symmetry in random dot displays. Vision Research, 19, 783-793.
doi:10.1016/0042-6989(79)90154-8
Barrett, B. T., Whitaker, D., McGraw, P.V., & Herbert, A. M. (1999) Discriminating
mirror symmetry in foveal and extra-foveal vision. Vision Research, 39, 3737-
3744. doi:10.1016/S0042-6989(99)00083-8
Bouma, H. (1970). Interaction effects in parafoveal letter recognition. Nature,
226(5241), 177-178.
Chung, S. T. L., Li, R. W., & Levi, D. M. (2007). Crowding between first and second
order letter stimuli in normal foveal and peripheral vision. Journal of Vision, 7, 1–
13. doi:10.1167/7.2.10
Cowey, A. & Rolls, E.T. (1974) Human cortical magnification factor and its relation
to visual acuity. Experimental Brain Research, 21, 447–454. Retrieved from
http://www.ncbi.nlm.nih.gov/pubmed/4442497
Connolly, M. & Van Essen, D. (1984) The representation of the visual field in
parvicellular and magnocellular layers of the lateral geniculate nucleus in the
macaque monkey. Journal of Comparative Neurology, 226(4), 544-64. Retrieved
from http://www.ncbi.nlm.nih.gov/pubmed/6747034.
Danilova, M. V. & Bondarko, V. M. (2007). Foveal contour interactions and
crowding effects at the resolution limit of the visual system. Journal of Vision,
7(2):25, 21-18. doi: 10.1167/7.2.25
Daniel, P. M. & Whitteridge, D. (1961) The representation of the visual field on the
cerebral cortex of monkeys. Journal of Physiology, 159, 203-221. Retrieved from
http://jp.physoc.org/content/159/2/203.long
Drasdo, N. (1977) The neural representation of visual space. Nature, 266(5602), 554-
556. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/859622.
Dow, B. M., Snyder, A.Z., Vautin, R. G., & Bauer, R. (1981) Magnification factor
and receptive field size in foveal striate cortex of the monkey. Experimental Brain
Research, 44(2):213-28. doi: 10.1007/BF00237343
Feng, C., Jiang, Y. & He, S. (2007). Horizontal and vertical asymmetry in visual spatial
crowding effects. Journal of Vision, 7(2):13, 1-10. doi: 10.1167/7.2.13
Flom, M. C., Weymouth, F. W., & Kahneman, D. (1963) Visual resolution and
contour interaction. Journal of the Optical Society of America, 53(9), 1026-1032.
Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/14065335
Gurnsey, R., Herbert, A. M., & Kenemy, J. (1998a). Bilateral symmetry embedded in
noise is detected accurately only at fixation. Vision Research, 38, 3795-3803.
doi:10.1016/S0042-6989(98)00106-0
Gurnsey, R., Herbert, A., & Nguyen-Tri, D. (1998b). Bilateral Symmetry is not detected
in parallel. Canadian Society for Brain, Behaviour and Cognitive Science. June,
Ottawa.
Gurnsey, R., Roddy, G., & Chanab, W. (2011). Crowding and multiple magnification
theory. Journal of Vision, 11(7), [in process] doi: 10.1167/11.7.15
Gurnsey, R., Roddy, G., Ouhnana, M., & Troje, N. F. (2008) Stimulus magnification
equates identification and discrimination of biological motion across the visual
field. Vision Research, 48(28), 2827-2834. doi:10.1016/j.visres.2008.09.016
He, S., Cavanagh, P., & Intriligator, J. (1996) Attentional resolution and the locus of
visual awareness. Nature, 383(6598), 334-337. doi:10.1016/S1364-
6613(97)89058-4
Hodgson, D. (2011) The first appearance of symmetry in the human lineage: Where
perception meets art. Symmetry, 3, 37-53. doi:10.3390/sym3010037
Horridge, G. A. (1996). The honeybee (Apis mellifera) detects bilateral symmetry and
discriminates its axis, Journal of Insect Physiology. 42, 755–764. Retrieved from
http://www.mendeley.com/research/the-honeybee-apis-mellifera-detects-bilateralsymmetry-
and-discriminates-its-axis-1/
Hubel, D. H. & Weisel, T. N. (1974) Uniformity of monkey striate cortex: a parallel
relationship between field size, scatter, and magnification factor. Journal of
Comparative Neurology, 158(3), 295-305. doi: 10.1002/cne.901580305
Jenkins, B. (1982) Redundancy in the perception of bilateral symmetry in dot
textures. Perception & Psychophysics, 32(2), 171 – 177. doi:
10.3758/BF03204276
Jenkins, B. (1983) Component processes in the perception of bilaterally symmetric dot
textures. Perception & Psychophysics, 34, 433-440. doi: 10.3758/BF03203058
Jenkins, B. (1985) Orientational Anistropy in the human visual system. Perception &
Psychophysics, 37(2), 125-134. doi: 10.3758/BF03202846
Kleiner M, Brainard, D. H., & Pelli, D. G. (2007). What's new in Psychtoolbox-3?
Perception (ECVP Abstract Supplement), 14.
Korte, W. (1923) Uber die Gestaltauffassung im indirekten Sehen. Zeitschrift fu¨r
Psychologie, 93, 17–82, Quoted translation by Uta Wolfe appeared in Pelli et al.
2004.
Latham, K. & Whitaker, D. (1996) Relative roles of resolution and spatial interference
in foveal and peripheral vision. Ophthalmic Physiological Optics, 61 (1), 49-57.
doi: 10.1046/j.1475-1313.1996.95001247.x
Levi, D. M. (2008) Crowding-an essential bottleneck for object recognition: a minireview.
Vision Research, 48(5), 635-654. doi:10.1016/j.visres.2007.12.009
Levi, D. M. & Carney, T. (2009) Crowding in peripheral vision: Why bigger is better.
Current Biology, 19, 1988-1993. doi: 10.1167/11.1.10
Levi, D. M., Hariharan, S., & Klein, S. A. (2002a) Suppressive and facilitatory spatial
interactions in peripheral vision: peripheral crowding is neither size invariant nor
simple contrast masking. Journal of Vision, 2(2), 167-177. doi:10.1167/2.2.3
Levi, D. M., Klein, S. A., & Aitsebaomo, A.P., (1985) Vernier acuity, crowding and
cortical magnification. Vision Research, 25, 963-977. doi:10.1016/0042-
6989(85)90207-X
Levi, D. M., Klein, S. A., & Hariharan, S. (2002b
) Suppressive and facilitatory spatial
interactions in foveal vision: foveal crowding is simple contrast masking. Journal
of Vision, 2(2), 140-166. doi:10.1167/2.2.2Liu, L., & Arditi, A. (2000) Apparent string shortening concomitant with letter
crowding. Vision Research, 40, 1059-1067. doi:10.1016/S0042-6989(99)00247-3
Livne, T. & Sagi, D. (2010) How do flankers relations affect crowding? Journal of
Vision, 10(3), 1-14. doi:10.1167/10.3.1
Locher, P. J. & Wagemans, J. (1993) Effects of element type and spatial grouping on
symmtery detection. Perception, 22(5), 565-587. doi:10.1068/p220565
Makela, P., Whitaker, D., & Rovamo, J. (1993). Modelling of orientation discrimination
across the visual field. Vision Research, 33, 723–730. doi:10.1016/0042-
6989(93)90192-Y
Melmoth, D. R., Kukkonen, H. T., Mäkelä, P. K., & Rovamo, J. M. (2000). The effect
of contrast and size scaling on face perception in foveal and extrafoveal vision.
Investigative Ophthalmology and Visual Science, 41(9), 2811-2819. Retrieved
from http://www.iovs.org/content/41/9/2811.full.pdf+html
Moriyama, M. & Moriyama, M. (1999) A comparison between asymmetric Japanese
Ikebana and symmetric western flower arrangement. Forma, 14, 355-361.
Retrieved from
http://beepdf.com/doc/77592/a_comparison_between_asymmetric_japanese_ikeb
ana_and_symmetric_western_.html
Olivers, C. N. L. & Peter van der Helm (1998) Symmetry and selective attention: A
dissociation between effortless perception and serial search. Perception and
Psychophysics, 60(7), 1101-1116. doi: 10.3758/BF03206161
Parkes, L., Lund, J., Angelucci, A., Solomon, J. A., & Morgan, M. (2001).
Compulsory averaging of crowded orientation signals in human vision. Nature
Neuroscience, 4, 739-744. doi:10.1038/89532
Pelli, D. G. (2008). Crowding: a cortical constraint on object recognition. Current
Opinion in Neurobiology, 18(4), 445-451. doi: 10.1016/j.conb.2008.09.008
Pelli, D. G., Palomaras, M., & Majaj, N. J. (2004). Crowding is unlike ordinary
masking: Distinguishing feature integration from detection. Journal of Vision, 4,
1136-1169. doi:10.1167/4.12.12
Pelli, D. G., Tillman, K. A., Freeman, J., Su, M., Berger, T. D., & Majaj, N. J. (2007).
Crowding and eccentricity determine reading rate. Journal of Vision, 7(2), 21-36.
doi:10.1167/7.2.20
Perry, H. V. & Cowey, A. (1985) The ganglion cell and cone distributions in the
monkey's retina: Implications for central magnification factors. Vision Research,
25(12), 1795-1810. doi:10.1016/0042-6989(85)90004-5
Petrov, Y. & Popple, A. V. (2007) Crowding and surround suppression: Not to be
confused. Journal of Vision, 7(2), 1–9. doi: 10.1167/7.2.12
Poder, E. (2008) Crowding with coarse detection and coarse discrimination of simple
visual features. Journal of Vision, 8(4):24, 1-6. doi: 10.1167/8.4.24
Poder, E., & Wagemans, J. (2007) Crowding with conjunctions of simple features.
Journal of Vision, 7(2):23, 1-12. doi: 10.1167/7.2.23
Poirier, F. J. A. M. & Gurnsey, R., (1998). The effects of eccentricity and spatial
frequency on the orientation discrimination asymmetry. Spatial Vision, 349-66.
doi: 10.1163/156856898X00077
Poirier, F. J. A. M., & Gurnsey, R. (2002). Two eccentricity-dependent limitations on
subjective contour discrimination. Vision Research, 42(2), 227-238.
doi:10.1016/S0042-6989(01)00273-5
Rovamo, J., & Virsu, V. (1979). An estimation and application of the human cortical
magnification factor. Experimental Brain Research, 37(3), 495-510. doi:
10.1007/BF00236819
Saarela, T. P., Sayim, B., Westheimer, G., & Herzog, M. H. (2009). Global stimulus
configuration modulates crowding. Journal of Vision, 9(2):5, 1–11.
doi:10.1167/9.2.5
Saarela, T. P., Westheimer, G., & Herzog, M. H. (2010). The effect of spacing
regularity on visual crowding. Journal of Vision, 10(10):17, 1–7.
doi:10.1167/10.10.17
Saarinen, J. (1988) Detection of mirror symmetry in random dot patterns at different
eccentricities. Vision Research, 28 (6), 755-759. doi:10.1016/0042-
6989(88)90054-5
Saarinen, J, Rovamo, J., & Virsu, V. (1989). Analysis of spatial structure in eccentric
vision. Investigative Ophthalmology and Vision Science, 30 (2), 293-296.
Retrieved from http://www.iovs.org/content/30/2/293.long
Sally, S., & Gurnsey, R. (2001). Symmetry detection across the visual field. Spatial
Vision, 14(2), 217-234. doi: 10.1163/156856801300202940
Strasburger, H., Harvey, L. O., Jr., & Rentschler, I. (1991). Contrast thresholds for
identification of numeric characters in direct and eccentric view. Perception and
Psychophysics, 49, 495-508. Retrieved from
http://www.mendeley.com/research/contrast-thresholds-identification-numericcharacters-
direct-eccentric-view/
Swaddle, J. P., & Cuthill, I. C. (1993) Preference for symmetric males by female zebra
finches. Nature, 367, 165-166. doi:10.1038/367165a0
Thibos, L. N., Still, D. L., & Bradley, A. (1996) Characterization of spatial aliasing
and contrast sensitivity in peripheral vision. Vision Research, 36(2), 249-258.
doi:10.1016/0042-6989(95)00109-D
Thibos, L. N., Cheney, F. E., & Walsh, D. J. (1987) Retinal limits to the detection
and resolution of gratings. Journal of the Optical Society of America, 4(8), 1524-
1529. doi:10.1364/JOSAA.4.001524
Toet, A., & Levi, D. M. (1992). The two-dimensional shape of spatial interaction zones
in the parafovea. Vision Research, 32(7), 1349-1357. doi:
10.1163/156856894X00350
Treisman, A. M. & Gelade, G. A (1980) Feature-integration theory of attention.
Cognitive Psychology, 12, 97-136, doi:0010-0285(80)90005-5
Tripathy, S. P. & Cavanagh, P. (2002) The extent of crowding in peripheral vision
does not scale with target size, Vision Research, 42, 2357-2369.
doi:10.1016/S0042-6989(02)00197-9
Tyler, C. W. & Hardage, L. (1996) In Tyler, C. W., Editor. Human Symmetry
Perception, Utrecht, Netherlands: VSP, 157-171.
Tyler, C. W., Hardage, L., & Miller, R. T. (1995) Multiple mechanisms for the
detection of mirror symmetry. Spatial Vision, 9 (1), 79-100. doi:
10.1163/156856895X00124
Van der Helm, P. (2011) The influence of perception on the distribution of multiple
symmetries in nature and art. Symmetry, 3, 51-71. doi:10.3390/sym3010054
Virsu, V., Näsänen, R., & Osomoviita, K. (1987) Cortical magnification and
peripheral vision. Journal of the Optical Society of America, 4(8), 1568-1578.
doi:10.1364/JOSAA.4.001568
Wagemans, J. (1992) Perceptual use of nonaccidental properties. Canadian Journal of
Psychology, 46, 236-279. doi: 10.1037/h0084323
Wagemans, J. (1993) Skewed symmetry: A nonaccidental property used to perceive
visual forms. Journal of Experimental Psychology: Human Perception and
Performance, 19, 364-380. Retrieved from
http://www.sciencedirect.com/science/article/pii/S0096152302009379
Wagemans, J. (1995) Detection of visual symmetries. Spatial Vision, 9, 9-32. Retrived
from www.ncbi.nlm.nih.gov/pubmed/7626549
Watson, A. B. (1987) Estimation of local spatial scale. Journal of the Optical Society
of America A, 4, 1579–1582. doi:10.1364/JOSAA.4.001579
Watson, A. B., & Pelli, D. G. (1983). QUEST: A Bayesian adaptive psychometric
method. Perception & Psychophysics, 33, 113-120. Retrieved from
http://academic.research.microsoft.com/Publication/1972926
Wenderoth, P. (1994) The salience of vertical symmetry. Perception, 23, 221-236.
Retrieved from http://www.perceptionweb.com/abstract.cgi?id=p230221
Westheimer, G. (1982) The spatial grain of the perifoveal visual field. Vision Research,
22(1), 157-162. doi:10.1016/0042-6989(82)90177-8
Weymouth, F. W. (1958) Visual sensory units and the minimal angle of resolution.
American Journal of Ophthalmology, 46, 102-113.
Whitaker, D., Rovamo, J., MacVeigh, D., & Mäkelä, P. (1992) Spatial scaling of vernier
acuity tasks. Vision Research, 32(8), 1481-1491. doi:10.1016/0042-
6989(92)90204-V
Whitney, D., & Levi, D. (2011) Visual crowding: a fundamental limit on conscious
perception and object recognition. Trends in Cognitive Sciences, 15(4), 160-168.
doi:10.1016/j.tics.2011.02.005
Wilson, H. R., Levi, D., Maffei, L., Rovamo, J., & DeValois, R. (1990) The
perception of form: Retina to striate cortex. In L. Spillman and J. S. Werner
(Eds.), Visual Perception, The Neurophysiological Foundations. (pp. 231-272).
Academic Press, Inc.
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top