Eisenhauer, H. Anne, Shames, Sofia, Pawelek, Peter D. and Coulton, James W. (2005) Siderophore Transport through Escherichia coli Outer Membrane Receptor FhuA with Disulfide-tethered Cork and Barrel Domains. Journal of Biological Chemistry, 280 (34). pp. 30574-30580. ISSN 0021-9258
Preview |
Text (published version) (application/pdf)
289kBJBiolChem_2005.pdf |
Official URL: http://www.jbc.org/cgi/content/abstract/280/34/305...
Abstract
The hydroxamate siderophore receptor FhuA is a TonB-dependent outer membrane protein of Escherichia coli composed of a C-terminal 22-stranded -barrel occluded by an N-terminal globular cork domain. During siderophore transport into the periplasm, the FhuA cork domain has been proposed to undergo conformational changes that allow transport through the barrel lumen; alternatively, the cork may be completely displaced from the barrel. To probe such changes, site-directed cysteine mutants in the cork domain (L109C and Q112C) and in the barrel domain (S356C and M383C) were created within the putative siderophore transport pathway. Molecular modeling predicted that the double cysteine mutants L109C/S356C and Q112C/M383C would form disulfide bonds, thereby tethering the cork and barrel domains. The double cysteine FhuA mutants were denatured under nonreducing conditions and fluorescently labeled with thiol-specific Oregon Green maleimide. Subsequent SDS-PAGE analysis revealed two distinct species: FhuA containing a disulfide bond and FhuA with free sulfhydryl groups. To address the role of the putative siderophore transport pathway and to evaluate possible rearrangements of the cork domain during ferricrocin transport, disulfide bond formation was enhanced by an oxidative catalyst. Cells containing double cysteine FhuA mutants that were subjected to oxidation during ferricrocin transport exhibited disulfide bond formation to near completion. After disulfide tethering of the cork to the barrel, ferricrocin transport was equivalent to transport by untreated cells. These results demonstrate that blocking the putative siderophore transport pathway does not abrogate ferricrocin uptake. We propose that, during siderophore transport through FhuA, the cork domain remains within the barrel rather than being displaced.
Divisions: | Concordia University > Faculty of Arts and Science > Chemistry and Biochemistry |
---|---|
Item Type: | Article |
Refereed: | Yes |
Authors: | Eisenhauer, H. Anne and Shames, Sofia and Pawelek, Peter D. and Coulton, James W. |
Journal or Publication: | Journal of Biological Chemistry |
Date: | August 2005 |
ID Code: | 6342 |
Deposited By: | KUMIKO VEZINA |
Deposited On: | 14 Sep 2009 19:30 |
Last Modified: | 18 Jan 2018 17:28 |
References:
Aziz, Q. H., Partridge, C. J., Munsey, T. S., and Sivaprasadarao, A. (2002) J. Biol. Chem. 277, 42719-42725Bonhivers, M., Desmadril, M., Moeck, G. S., Boulanger, P., Colomer-Pallas, A., and Letellier, L. (2001) Biochemistry 40, 2606-2613
Bös, C., and Braun, V. (1997) FEMS Microbiol. Lett. 153, 311-319
Braun, V., and Braun, M. (2002) FEBS Lett. 529, 78-85
Braun, M., Killmann, H., and Braun, V. (1999) Mol. Microbiol. 33, 1037-1049
Buchanan, S. K., Smith, B. S., Venkatramani, L., Xia, D., Esser, L., Palnitkar, M., Chakraborty, R., van der Helm, D., and Deisenhofer, J. (1999) Nat. Struct. Biol. 6, 56-63
Cadieux, N., and Kadner, R. J. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 10673-10678
Chervitz, S. A., and Falke, J. J. (1995) J. Biol. Chem. 270, 24043-24053
Chimento, D. P., Mohanty, A. K., Kadner, R. J., and Wiener, M. C. (2003) Nat. Struct. Biol. 10, 394-401
Coulton, J. W., Mason, P., and DuBow, M. S. (1983) J. Bacteriol. 156, 1315-1321
Endriss, F., Braun, M., Killmann, H., and Braun, V. (2003) J. Bacteriol. 185, 4683-4692
Fadrus, H., and Maly, J. (1975) Analyst 100, 549-554
Faraldo-Gomez, J. D., Smith, G. R., and Sansom, M. S. (2003) Biophys. J. 85, 1406-1420
Ferguson, A. D., Hofmann, E., Coulton, J. W., Diederichs, K., and Welte, W. (1998) Science 282, 2215-2220 Locher, K. P., Rees, B., Koebnik, R., Mitschler, A., Moulinier, L., Rosenbusch, J. P., and Moras, D. (1998) Cell 95, 771-778
Ferguson, A. D., and Deisenhofer, J. (2004) Cell 116, 15-24
Fu, D., Sarker, R. I., Abe, K., Bolton, E., and Maloney, P. C. (2001) J. Biol. Chem. 276, 8753-8760
Hantke, K. (1981) Mol. Gen. Genet. 182, 288-292
Hazes, B., and Dijkstra, B. W. (1988) Protein Eng. 2, 119-125
Hughson, A. G., and Hazelbauer, G. L. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 11546-11551
Klebba, P. E. (2003) Front. Biosci. 8, s1422-s1436
Larsen, R. A., Letain, T. E., and Postle, K. (2003) Mol. Microbiol. 49, 211-218
Loo, T. W., Bartlett, M. C., and Clarke, D. M. (2004) J. Biol. Chem. 279, 18232-18238
Loo, T. W., Bartlett, M. C., and Clarke, D. M. (2004) J. Biol. Chem. 279, 7692-7697
Moeck, G. S., Tawa, P., Xiang, H., Ismail, A. A., Turnbull, J. L., and Coulton, J. W. (1996) Mol. Microbiol. 22, 459-471
Moeck, G. S., Ratcliffe, M. J. H., and Coulton, J. W. (1995) J. Bacteriol. 177, 6118-6125M. J. H.
Postle, K., and Kadner, R. J. (2003) Mol. Microbiol. 49, 869-882
Scott, D. C., Cao, Z., Qi, Z., Bauler, M., Igo, J. D., Newton, S. M. C., and Klebba, P. E. (2001) J. Biol. Chem. 276, 13025-13033
Usher, K. C., Özkan, E., Gardner, K. H., and Deisenhofer, J. (2001) Proc. Natl. Acad. Sci. U. S. A. 98, 10676-10681
Van Gelder, P., Dumas, F., Bartoldus, I., Saint, N., Prilipov, A., Winterhalter, M., Wang, Y., Philippsen, A., Rosenbusch, J. P., and Schirmer, T. (2002) J. Bacteriol. 184, 2994-2999
Ye, L., Jia, Z., Jung, T., and Maloney, P. C. (2001) J. Bacteriol. 183, 2490-2496
Repository Staff Only: item control page