Titorenko, Vladimir I. ORCID: https://orcid.org/0000-0001-5819-7545, Chan, Honey and Rachubinski, Richard A. (2000) Fusion of Small Peroxisomal Vesicles in Vitro Reconstructs an Early Step in the in Vivo Multistep Peroxisome Assembly Pathway of Yarrowia lipolytica. The Journal of Cell Biology, 148 (1). pp. 29-44. ISSN 0021-9525
Preview |
Text (application/pdf)
1MBTitorenko_JCB2000.pdf - Published Version |
Official URL: http://dx.doi.org/10.1083/jcb.148.1.29
Abstract
We have identified and purified six subforms of peroxisomes, designated P1 to P6, from the yeast, Yarrowia lipolytica. An analysis of trafficking of peroxisomal proteins in vivo suggests the existence of a multistep peroxisome assembly pathway in Y. lipolytica. This pathway operates by conversion of peroxisomal subforms in the direction P1, P2→P3→P4→P5→P6 and involves the import of various peroxisomal proteins into distinct vesicular intermediates. We have also reconstituted in vitro the fusion of the earliest intermediates in the pathway, small peroxisomal vesicles P1 and P2. Their fusion leads to the formation of a larger and more dense peroxisomal vesicle, P3. Fusion of P1 and P2 in vitro requires cytosol and ATP hydrolysis and is inhibited by antibodies to two membrane-associated ATPases of the AAA family, Pex1p and Pex6p. We provide evidence that the fusion in vitro of P1 and P2 peroxisomes reconstructs an actual early step in the peroxisome assembly pathway operating in vivo in Y. lipolytica.
Divisions: | Concordia University > Faculty of Arts and Science > Biology |
---|---|
Item Type: | Article |
Refereed: | Yes |
Authors: | Titorenko, Vladimir I. and Chan, Honey and Rachubinski, Richard A. |
Journal or Publication: | The Journal of Cell Biology |
Date: | 10 January 2000 |
Digital Object Identifier (DOI): | 10.1083/jcb.148.1.29 |
ID Code: | 7567 |
Deposited By: | Danielle Dennie |
Deposited On: | 11 May 2011 17:02 |
Last Modified: | 28 May 2019 19:03 |
References:
Acharya, U., R. Jacobs, J.-M. Peters, N. Watson, M.G. Farquhar, V. Malhotra(1995) The formation of Golgi stacks from vesiculated Golgi membranes requires two distinct fusion events. Cell. 82:895–904, pmid:7553850.Aitchison, J.D., R.K. Szilard, W.M. Nuttley, R.A. Rachubinski(1992) Antibodies directed against a yeast carboxyl-terminal peroxisomal targeting signal specifically recognize peroxisomal proteins from various yeasts. Yeast. 8:721–734, pmid:1279909.
Banerjee, A., V.A. Barry, B.R. DasGupta, T.F.J. Martin(1996) N-ethylmaleimide-sensitive factor acts at a prefusion ATP-dependent step in Ca2+-activated exocytosis. J. Biol. Chem. 271:20223–20226, pmid:8702750.
Bonifacino, J.S., and E.C. Dell'Angelica. 1998. Immunoprecipitation. In Current Protocols in Cell Biology. J.S. Bonifacino, M. Dasso, J.B. Harford, J. Lippincott-Schwartz, and K. Yamada, editors. John Wiley and Sons, New York. 7.2.1–7.2.21.
Chamberlain, L.H., D. Roth, A. Morgan, R.D. Burgoyne(1995) Distinct effect of α-SNAP, 14-3-3 proteins, and calmodulin on priming and targeting of regulated exocytosis. J. Cell Biol. 130:1063–1070, pmid:7657692.
Denesvre, C., V. Malhotra(1996) Membrane fusion in organelle biogenesis. Curr. Opin. Cell Biol. 8:519–523, pmid:8791453.
Erdmann, R., M. Veenhuis, W.-H. Kunau(1997) Peroxisomesorganelles at the crossroads. Trends Cell Biol. 7:400–407, pmid:17708989.
Erdmann, R., F.F. Wiebel, A. Flessau, J. Rytka, A. Beyer, K.-U. Fröhlich, W.-H. Kunau(1991) PAS1, a yeast gene required for peroxisome biogenesis, encodes a member of a novel family of putative ATPases. Cell. 64:499–510, pmid:1825027.
Eitzen, G.A., R.K. Szilard, R.A. Rachubinski(1997) Enlarged peroxisomes are present in oleic acid-grown Yarrowia lipolytica overexpressing the PEX16 gene encoding an intraperoxisomal peripheral membrane peroxin. J. Cell Biol. 137:1265–1278, pmid:9182661.
Eitzen, G.A., V.I. Titorenko, J.J. Smith, M. Veenhuis, R.K. Szilard, R.A. Rachubinski(1996) The Yarrowia lipolytica gene PAY5 encodes a peroxisomal integral membrane protein homologous to the mammalian peroxisome assembly factor PAF-1. J. Biol. Chem. 271:20300–20306, pmid:8702763.
Faber, K.N., J.A. Heyman, S. Subramani(1998) Two AAA family peroxins, PpPex1p and PpPex6p, interact with each other in an ATP-dependent manner and are associated with different subcellular membranous structures distinct from peroxisomes. Mol. Cell. Biol. 18:936–943, pmid:9447990.
Geisbrecht, B.V., C.S. Collins, B.E. Reuber, S.J. Gould(1998) Disruption of a PEX1-PEX6 interaction is the most common cause of the neurologic disorders Zellweger syndrome, neonatal adrenoleukodystrophy, and infantile Refsum disease. Proc. Natl. Acad. Sci. USA. 95:8630–8635, pmid:9671729.
Haas, A., W. Wickner(1996) Homotypic vacuole fusion requires Sec17p (yeast α-SNAP) and Sec18p (yeast NSF) EMBO (Eur. Mol. Biol. Organ.) J. 15:3296–3305.Medline↵ Heinemann, P., W.W. Just(1992) Peroxisomal protein import. In vivo evidence for a novel translocation competent compartment. FEBS Lett. 300:179–182, pmid:1563518.
Hermann, G.J., J.M. Shaw(1998) Mitochondrial dynamics in yeast. Annu. Rev. Cell Dev. Biol. 14:265–303, pmid:9891785.
Heyman, J.A., E. Monosov, S. Subramani(1994) Role of the PAS1 gene of Pichia pastoris in peroxisome biogenesis. J. Cell Biol. 127:1259–1273, pmid:7962088.
Latterich, M., K.-U. Fröhlich, R. Schekman(1995) Membrane fusion and the cell cycleCdc48p participates in the fusion of ER membranes. Cell. 82:885–893, pmid:7553849.
Latterich, M., R. Schekman(1994) The karyogamy gene KAR2 and novel proteins are required for ER-membrane fusion. Cell. 78:87–98, pmid:8033215.
Lüers, G., T. Hashimoto, H.D. Fahimi, A. Völkl(1993) Biogenesis of peroxisomesisolation and characterization of two distinct peroxisomal populations from normal and regenerating rat liver. J. Cell Biol. 121:1271–1280, pmid:8509448.
Matsuoka, K., D.C. Bassham, N.V. Raikhel, K. Nakamura(1995) Different sensitivity to wortmannin of two vacuolar sorting signals indicates the presence of distinct sorting machineries in tobacco cells. J. Cell Biol. 130:1307–1318, pmid:7559754.
Mellman, I.(1995) Enigma variationsprotein mediators of membrane fusion. Cell. 82:869–872, pmid:7553845.
Nichols, B.J., C. Ungermann, H.R.B. Pelham, W. Wickner, A. Haas(1997) Homotypic vacuolar fusion mediated by t- and v-SNAREs. Nature. 387:199–202, pmid:9144293.
Novick, P., M. Zerial(1997) The diversity of Rab proteins in vesicle transport. Curr. Opin. Cell Biol. 9:496–504, pmid:9261061.
Otto, H., P.I. Hanson, R. Jahn(1997) Assembly and disassembly of a ternary complex of synaptobrevin, syntaxin, and SNAP-25 in the membrane of synaptic vesicles. Proc. Natl. Acad. Sci. USA. 94:6197–6201, pmid:9177194.
Patel, S., M. Latterich(1998) The AAA teamrelated ATPases with diverse functions. Trends Cell Biol. 8:65–71, pmid:9695811.
Pfeffer, S.R.(1996) Transport vesicle dockingSNAREs and associates. Annu. Rev. Cell Dev. Biol. 12:441–461, pmid:8970734.
Purdue, P.E., P.B. Lazarow(1995) Identification of peroxisomal membrane ghosts with an epitope-tagged integral membrane protein in yeast mutants lacking peroxisomes. Yeast. 11:1045–1060, pmid:7502580.
Rabouille, C., T.P. Levine, J.-M. Peters, G. Warren(1995) An NSF-like ATPase, p97, and NSF mediate cisternal regrowth from mitotic Golgi fragments. Cell. 82:905–914, pmid:7553851.
Rexach, M.F., R.W. Schekman(1991) Distinct biochemical requirements for the budding, targeting, and fusion of ER-derived transport vesicles. J. Cell Biol. 114:219–229, pmid:1649197.
Roggenkamp, R., H. Sahm, W. Hinkelmann, F. Wagner(1975) Alcohol oxidase and catalase in peroxisomes of methanol-grown Candida boidinii. Eur. J. Biochem. 59:231–236, pmid:1204609.
Rothman, J.E.(1994) Mechanisms of intracellular protein transport. Nature. 372:55–63, pmid:7969419.
Rothman, J.E., G. Warren(1994) Implications of the SNARE hypothesis for intracellular membrane topology and dynamics. Curr. Biol. 4:220–233, pmid:7922327.
South, S.T., S.J. Gould(1999) Peroxisome synthesis in the absence of preexisting peroxisomes. J. Cell Biol. 144:255–266, pmid:9922452.
Spong, A.P., S. Subramani(1993) Cloning and characterization of PAS5a gene required for peroxisome biogenesis in the methylotrophic yeast Pichia pastoris. J. Cell Biol. 123:535–548, pmid:8227124.
Subramani, S.(1996) Protein translocation into peroxisomes. J. Biol. Chem. 271:32483–32486, pmid:8955066.
Szilard, R.K., V.I. Titorenko, M. Veenhuis, R.A. Rachubinski(1995) Pay32p of the yeast Yarrowia lipolytica is an intraperoxisomal component of the matrix protein translocation machinery. J. Cell Biol. 131:1453–1469, pmid:8522603.
Tamura, S., K. Okumoto, R. Toyama, N. Shimozawa, T. Tsukamoto, Y. Suzuki, T. Osumi, N. Kondo, Y. Fujiki(1998) Human PEX1 cloned by functional complementation on a CHO cell mutant is responsible for peroxisome-deficient Zellweger syndrome of complementation group I. Proc. Natl. Acad. Sci. USA. 95:4350–4355, pmid:9539740.
Titorenko, V.I., G.A. Eitzen, R.A. Rachubinski(1996) Mutations in the PAY5 gene of the yeast Yarrowia lipolytica cause the accumulation of multiple subforms of peroxisomes. J. Biol. Chem. 271:20307–20314, pmid:8702764.
Titorenko, V.I., D.M. Ogrydziak, R.A. Rachubinski(1997) Four distinct secretory pathways serve protein secretion, cell surface growth, and peroxisome biogenesis in the yeast Yarrowia lipolytica. Mol. Cell. Biol. 17:5210–5226, pmid:9271399.
Titorenko, V.I., R.A. Rachubinski(1998) Mutants of the yeast Yarrowia lipolytica defective in protein exit from the endoplasmic reticulum are also defective in peroxisome biogenesis. Mol. Cell. Biol. 18:2789–2803, pmid:9566898.
Titorenko, V.I., J.J. Smith, R.K. Szilard, R.A. Rachubinski(1998) Pex20p of the yeast Yarrowia lipolytica is required for the oligomerization of thiolase in the cytosol and for its targeting to the peroxisome. J. Cell Biol. 142:403–420, pmid:9679140.
Ungermann, C., B.J. Nichols, H.R.B. Pelham, W. Wickner(1998) A vacuolar v-t-SNARE complex, the predominant form in vivo and on isolated vacuoles, is disassembled and activated for docking and fusion. J. Cell Biol. 140:61–69, pmid:9425154.
Ungermann, C., W. Wickner(1998) Vam7p, a vacuolar SNAP-25 homolog, is required for SNARE complex integrity and vacuole docking and fusion. EMBO (Eur. Mol. Biol. Organ.) J. 17:3269–3276.
van der Klei, I.J., M. Veenhuis(1996) Peroxisome biogenesis in the yeast Hansenula polymorphaa structural and functional analysis. Ann. NY Acad. Sci. 804:47–59, pmid:8993535.
van Roermund, C.W.T., M. van der Berg, R.J.A. Wanders(1995) Localization of peroxisomal 3-oxoacyl-CoA thiolase in particles of varied density in rat liverimplications for peroxisome biogenesis. Biochim. Biophys. Acta. 1245:348–358, pmid:8541311.
Wang, H.J., M.-T. Le Dall, Y. Waché, C. Laroche, J.-M. Belin, C. Gaillardin, J.-M. Nicaud(1999) Evaluation of acyl coenzyme A oxidase (Aox) isozyme function in the n-alkane-assimilating yeast. Yarrowia lipolytica. J. Bacteriol. 181:5140–5148, pmid:10464181.
Warren, G., W. Wickner(1996) Organelle inheritance. Cell. 84:395–400, pmid:8608593.
Weber, T., B.V. Zemelman, J.A. McNew, B. Westermann, M. Gmachl, F. Parlati, T.H. Söllner, J.E. Rothman(1998) SNAREpinsminimal machinery for membrane fusion. Cell. 92:759–772, pmid:9529252.
Wilcke, M., K. Hultenby, S.E.H. Alexson(1995) Novel peroxisomal populations in subcellular fractions from rat liver. Implications for peroxisome structure and biogenesis. J. Biol. Chem. 270:6949–6958, pmid:7896845.
Xu, Z., K. Sato, W. Wickner(1998) LMA1 binds to vacuoles at Sec18p (NSF), transfers upon ATP hydrolysis to a t-SNARE (Vam3p) complex, and is released during fusion. Cell 93:1125–1134, pmid:9657146.
Repository Staff Only: item control page