Login | Register

Peroxisomal Membrane Fusion Requires Two Aaa Family Atpases, Pex1p and Pex6p

Title:

Peroxisomal Membrane Fusion Requires Two Aaa Family Atpases, Pex1p and Pex6p

Titorenko, Vladimir I. ORCID: https://orcid.org/0000-0001-5819-7545 and Rachubinski, Richard A. (2000) Peroxisomal Membrane Fusion Requires Two Aaa Family Atpases, Pex1p and Pex6p. The Journal of Cell Biology, 150 (4). pp. 881-886. ISSN 0021-9525

[thumbnail of Titorenko_JCB2000b.pdf]
Preview
Text (application/pdf)
Titorenko_JCB2000b.pdf - Published Version
170kB

Official URL: http://dx.doi.org/10.1083/jcb.150.4.881

Abstract

Two AAA family ATPases, NSF and p97, have been implicated in membrane fusion during assembly and inheritance of organelles of the secretory pathway. We have now investigated the roles of AAA ATPases in membrane fusion during assembly of the peroxisome, an organelle outside the classical secretory system. Here, we show that peroxisomal membrane fusion in the yeast Yarrowia lipolytica requires two AAA ATPases, Pex1p and Pex6p. Release of membrane- associated Pex1p and Pex6p drives the asymmetric priming of two fusion partners. The next step, peroxisome docking, requires release of Pex1p from one partner. Subsequent fusion of the peroxisomal membranes is independent of both Pex1p and Pex6p.

Divisions:Concordia University > Faculty of Arts and Science > Biology
Item Type:Article
Refereed:Yes
Authors:Titorenko, Vladimir I. and Rachubinski, Richard A.
Journal or Publication:The Journal of Cell Biology
Date:21 August 2000
Digital Object Identifier (DOI):10.1083/jcb.150.4.881
ID Code:7570
Deposited By: Danielle Dennie
Deposited On:11 May 2011 17:06
Last Modified:28 May 2019 19:03

References:

Acharya, U., R. Jacobs, J.-M. Peters, N. Watson, M.G. Farquhar, V. Malhotra(1995) The formation of Golgi stacks from vesiculated Golgi membranes requires two distinct fusion events. Cell. 82:895–904, pmid:7553850.

Erdmann, R., F.F. Wiebel, A. Flessau, J. Rytka, A. Beyer, K.-U. Fröhlich, W.-H. Kunau(1991) PAS1, a yeast gene required for peroxisome biogenesis, encodes a member of a novel family of putative ATPases. Cell. 64:499–510, pmid:1825027.

Fröhlich, K.-U., H.W. Fries, M. Rudiger, R. Erdmann, D. Botstein, D. Mecke(1991) Yeast cell cycle protein CDC48p shows full-length homology to the mammalian protein VCP and is a member of a protein family involved in secretion, peroxisome formation and gene expression. J. Cell Biol. 114:443–453, pmid:1860879.

Haas, A., W. Wickner(1996) Homotypic vacuole fusion requires Sec17p (yeast α-SNAP) and Sec18p (yeast NSF) EMBO (Eur. Mol. Biol. Organ.) J. 15:3296–3305.

Heyman, J.A., E. Monosov, S. Subramani(1994) Role of the PAS1 gene of Pichia pastoris in peroxisome biogenesis. J. Cell Biol. 127:1259–1273, pmid:7962088.

Jahn, R., T.C. Südhof(1999) Membrane fusion and exocytosis. Annu. Rev. Biochem. 68:863–911, pmid:10872468.

Kaiser, C.A., R. Schekman(1990) Distinct sets of SEC genes govern transport vesicle formation and fusion early in the secretory pathway. Cell. 61:723–733, pmid:2188733.

Latterich, M., K.-U. Fröhlich, R. Schekman(1995) Membrane fusion and the cell cycleCdc48p participates in the fusion of ER membranes. Cell. 82:885–893, pmid:7553849.

Mayer, A., W. Wickner(1997) Docking of yeast vacuoles is catalyzed by the ras-like GTPase Ypt7 after symmetric priming of Sec18p (NSF) J. Cell Biol. 136:307–317, pmid:9015302.

Müller, J.M.M., C. Rabouille, R. Newman, J. Shorter, P. Freemont, G. Schiavo, G. Warren, D.T. Shima(1999) An NSF function distinct from ATPase-dependent SNARE disassembly is essential for Golgi membrane fusion. Nat. Cell Biol. 1:335–340, pmid:10559959.

Nichols, B.J., H.R.B. Pelham(1998) SNAREs and membrane fusion in the Golgi apparatus. Biochim. Biophys. Acta 1404:9–31, pmid:9714710.

Nichols, B.J., C. Ungermann, H.R.B. Pelham, W. Wickner, A. Haas(1997) Homotypic vacuolar fusion mediated by t- and v-SNAREs. Nature. 387:199–202, pmid:9144293.

Otter-Nilsson, M., R. Hendriks, E.-I. Pecheur-Huet, D. Hoekstra, T. Nilsson(1999) Cytosolic ATPases, p97 and NSF, are sufficient to mediate rapid membrane fusion. EMBO (Eur. Mol. Biol. Organ.) J. 18:2074–2083.

Patel, S., M. Latterich(1998) The AAA teamrelated ATPases with diverse functions. Trends Cell Biol. 8:65–71, pmid:9695811.

Rabouille, C., T.P. Levine, J.-M. Peters, G. Warren(1995) An NSF-like ATPase, p97, and NSF mediate cisternal regrowth from mitotic Golgi fragments. Cell. 82:905–914, pmid:7553851.

Rexach, M.F., R.W. Schekman(1991) Distinct biochemical requirements for the budding, targeting, and fusion of ER-derived transport vesicles. J. Cell Biol. 114:219–229, pmid:1649197.

Rothman, J.E.(1994) Mechanisms of intracellular protein transport. Nature. 372:55–63, pmid:7969419.CrossRefMedline↵ Schwarz, T.L.(1999) NSF is up to new tricks. Nat. Cell Biol. 1:E141–E143, pmid:10559970.

Söllner, T., M.K. Bennett, S.W. Whiteheart, R.H. Scheller, J.E. Rothman(1993) A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell. 75:409–418, pmid:8221884.

Spong, A.P., S. Subramani(1993) Cloning and characterization of PAS5a gene required for peroxisome biogenesis in the methylotrophic yeast Pichia pastoris. J. Cell Biol. 123:535–548, pmid:8227124.

Szilard, R.K., V.I. Titorenko, M. Veenhuis, R.A. Rachubinski(1995) Pay32p of the yeast Yarrowia lipolytica is an intraperoxisomal component of the matrix protein translocation machinery. J. Cell Biol. 131:1453–1469, pmid:8522603.

Titorenko, V.I., R.A. Rachubinski(1998) Mutants of the yeast Yarrowia lipolytica defective in protein exit from the endoplasmic reticulum are also defective in peroxisome biogenesis. Mol. Cell. Biol. 18:2789–2803, pmid:9566898.

Titorenko, V.I., J.J. Smith, R.K. Szilard, R.A. Rachubinski(1998) Pex20p of the yeast Yarrowia lipolytica is required for the oligomerization of thiolase in the cytosol and for its targeting to the peroxisome. J. Cell Biol. 142:403–420, pmid:9679140.

Titorenko, V.I., H. Chan, R.A. Rachubinski(2000) Fusion of small peroxisomal vesicles in vitro reconstructs an early step in the in vivo multistep peroxisome assembly pathway of Yarrowia lipolytica. J. Cell Biol. 147:29–43, pmid:10629216.

Ungermann, C., K. Sato, W. Wickner(1998) Defining the functions of trans-SNARE pairs. Nature 396:543–548, pmid:9859990.

Weber, T., B.V. Zemelman, J.A. McNew, B. Westermann, M. Gmachl, F. Parlati, T.H. Söllner, J.E. Rothman(1998) SNAREpinsminimal machinery for membrane fusion. Cell 92:759–772, pmid:9529252.

Whiteheart, S.W., K. Rossnagel, S.A. Buhrow, M. Brunner, R. Jaenicke, J.E. Rothman(1994) N-ethylmaleimide–sensitive fusion proteina trimeric ATPase whose hydrolysis of ATP is required for membrane fusion. J. Cell Biol 126:945–954, pmid:8051214.
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top