Login | Register

Transcription Profiling of Candida albicans Cells Undergoing the Yeast-to-Hyphal Transition


Transcription Profiling of Candida albicans Cells Undergoing the Yeast-to-Hyphal Transition

Nantel, André, Dignard, Daniel, Bachewich, Catherine, Harcus, Doreen, Marcil, Anne, Bouin, Anne-Pascale, Sensen, Christoph W., Hogues, Hervé, van het Hoog, Marco, Gordon, Paul, Rigby, Tracey, Benoit, Francois, Tessier, Daniel C., Thomas, David Y. and Whiteway, Malcolm (2002) Transcription Profiling of Candida albicans Cells Undergoing the Yeast-to-Hyphal Transition. Molecular Biology of the Cell, 13 (10). pp. 3452-3465. ISSN 10591524

[thumbnail of Bachewich_MBotC2002.pdf]
Text (application/pdf)
Bachewich_MBotC2002.pdf - Published Version

Official URL: http://dx.doi.org/10.1091/mbc.E02-05-0272


The ability of the pathogenic fungus Candida albicans to switch from a yeast to a hyphal morphology in response to external signals is implicated in its pathogenicity. We used glass DNA microarrays to investigate the transcription profiles of 6333 predicted ORFs in cells undergoing this transition and their responses to changes in temperature and culture medium. We have identified several genes whose transcriptional profiles are similar to those of known virulence factors that are modulated by the switch to hyphal growth caused by addition of serum and a 37°C growth temperature. Time course analysis of this transition identified transcripts that are induced before germ tube initiation and shut off later in the developmental process. A strain deleted for the Efg1p and Cph1p transcription factors is defective in hyphae formation, and its response to serum and increased temperature is almost identical to the response of a wild-type strain grown at 37°C in the absence of serum. Thus Efg1p and Cph1p are needed for the activation of the transcriptional program that is induced by the presence of serum.

Divisions:Concordia University > Faculty of Arts and Science > Biology
Item Type:Article
Authors:Nantel, André and Dignard, Daniel and Bachewich, Catherine and Harcus, Doreen and Marcil, Anne and Bouin, Anne-Pascale and Sensen, Christoph W. and Hogues, Hervé and van het Hoog, Marco and Gordon, Paul and Rigby, Tracey and Benoit, Francois and Tessier, Daniel C. and Thomas, David Y. and Whiteway, Malcolm
Journal or Publication:Molecular Biology of the Cell
Date:October 2002
Digital Object Identifier (DOI):10.1091/mbc.E02-05-0272
ID Code:7584
Deposited By: Danielle Dennie
Deposited On:11 May 2011 21:41
Last Modified:18 Jan 2018 17:31


Ashman, R.B. (1998). Candida albicans: pathogenesis, immunity and host defense. Res. Immunol. 149, 281-288; discussion 494-496.
Bailey, D.A., Feldmann, P.J., Bovey, M., Gow, N.A., and Brown, A.J. (1996). The Candida albicans HYR1 gene, which is activated in response to hyphal development, belongs to a gene family encoding yeast cell wall proteins. J. Bacteriol. 178, 5353-5360

Balciunas, D., and Ronne, H. (1999). Yeast genes GIS1-4: multicopy suppressors of the Gal- phenotype of snf1 mig1 srb8/10/11 cells. Mol. Gen. Genet. 262, 589-599

Bidard, F., Bony, M., Blondin, B., Dequin, S., and Barre, P. (1995). The Saccharomyces cerevisiae FLO1 flocculation gene encodes for a cell surface protein. Yeast 11, 809-822

Birse, C.E., Irwin, M.Y., Fonzi, W.A., and Sypherd, P.S. (1993). Cloning and characterization of ECE1, a gene expressed in association with cell elongation of the dimorphic pathogen Candida albicans. Infect Immun 61, 3648-3655

Bockmuhl, D.P., and Ernst, J.F. (2001). A potential phosphorylation site for an A-type kinase in the Efg1 regulator protein contributes to hyphal morphogenesis of Candida albicans. Genetics 157, 1523-1530

Braun, B.R., Head, W.S., Wang, M.X., and Johnson, A.D. (2000). Identification, and characterization of TUP1-regulated genes in Candida albicans. Genetics 156, 31-44

Braun, B.R., and Johnson, A.D. (1997). Control of filament formation in Candida albicans by the transcriptional repressor TUP1. Science 277, 105-109

Brown, A.J., et al. (2000). Gene regulation during morphogenesis in Candida albicans. Contrib. Microbiol. 5, 112-25

Burchett, S.A., Volk, M.L., Bannon, M.J., and Granneman, J.G. (1998). Regulators of G protein signaling: rapid changes in mRNA abundance in response to amphetamine. J. Neurochem. 70, 2216-2219

Calinski, T., and Harabasz, J. (1974). A dendrite method for cluster analysis. Commun.Stat. 3, 1-27.
Cid, V.J., Cenamor, R., Sanchez, M., and Nombela, C. (1998). A mutation in the Rho1-GAP-encoding gene BEM2 of Saccharomyces cerevisiae affects morphogenesis and cell wall functionality. Microbiology 144, 25-36

Corner, B.E., and Magee, P.T. (1997). Candida pathogenesis: unraveling the threads of infection. Curr. Biol. 7, R691-R694

Cowen, L., Nantel, A., Whiteway, M., Thomas, D.Y., Tessier, D.C., Kohn, L.M., and Anderson, J.B. (2002). Population Genomics of drug resistance in Candida albicans. Proc. Natl. Acad. Sci. USA ( 99, 35719-35724.

De Backer, M.D., Ilyina, T., Ma, X.J., Vandoninck, S., Luyten, W.H., and Vanden Bossche, H. (2001). Genomic profiling of the response of Candida albicans to itraconazole treatment using a DNA microarray. Antimicrob. Agents Chemother. 45, 1660-1670

DiNubile, M.J., and Huang, S. (1997). Capping of the barbed ends of actin filaments by a high-affinity profilin-actin complex. Cell Motil. Cytoskelet. 37, 211-225

Eck, R., Stoyan, T., and Kunkel, W. (2001). The centromere-binding factor Cbf1p from Candida albicans complements the methionine auxotrophic phenotype of Saccharomyces cerevisiae. Yeast 18, 1047-1052

Eisen, M.B., Spellman, P.T., Brown, P.O., and Botstein, D. (1998). Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95, 14863-14868

Ernst, J.F. (2000). Regulation of dimorphism in Candida albicans. Contrib. Microbiol. 5, 98-111[Medline].
Feng, Q., Summers, E., Guo, B., and Fink, G. (1999). Ras signaling is required for serum-induced hyphal differentiation in Candida albicans. J. Bacteriol. 181, 6339-6346

Gaasterland, T., and Sensen, C.W. (1996). MAGPIE: automated genome interpretation. Trends Genet. 12, 76-78

Garrison, T.R., Zhang, Y., Pausch, M., Apanovitch, D., Aebersold, R., and Dohlman, H.G. (1999). Feedback phosphorylation of an RGS protein by MAP kinase in yeast. J. Biol. Chem. 274, 36387-36391

Gasch, A.P., Spellman, P.T., Kao, C.M., Carmel-Harel, O., Eisen, M.B., Storz, G., Botstein, D., and Brown, P.O. (2000). Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell 11, 4241-4257

Gillum, A., Tsay, E., and Kirsch, D. (1984). Isolation of the Candida albicans gene for orotidine-5'-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations. Mol. Gen. Genet. 198, 179-182

Hoyer, L.L., Payne, T.L., Bell, M., Myers, A.M., and Scherer, S. (1998). Candida albicans ALS3 and insights into the nature of the ALS gene family. Curr. Genet. 33, 451-459

Hube, B., Hess, D., Baker, C.A., Schaller, M., Schafer, W., and Dolan, J.W. (2001). The role, and relevance of phospholipase D1 during growth, and dimorphism of Candida albicans. Microbiology 147, 879-889

Hwang, C.S., Rhie, G., Kim, S.T., Kim, Y.R., Huh, W.K., Baek, Y.U., and Kang, S.O. (1999). Copper- and zinc-containing superoxide dismutase and its gene from Candida albicans. Biochim. Biophys. Acta 1427, 245-255

Khalaf, R.A., and Zitomer, R.S. (2001). The DNA binding protein Rfg1 is a repressor of filamentation in Candida albicans. Genetics 157, 1503-1512

Kim, Y.J., Francisco, L., Chen, G.C., Marcotte, E., and Chan, C.S. (1994). Control of cellular morphogenesis by the Ip12/Bem2 GTPase-activating protein: possible role of protein phosphorylation. J. Cell Biol. 127, 1381-1394

Knight, S.A., Tamai, K.T., Kosman, D.J., and Thiele, D.J. (1994). Identification and analysis of a Saccharomyces cerevisiae copper homeostasis gene encoding a homeodomain protein. Mol. Cell. Biol. 14, 7792-7804

Kohrer, K., and Domdey, H. (1991). Preparation of high molecular weight RNA. Methods Enzymol. 194, 398-405

Lane, S., Birse, C., Zhou, S., Matson, R., and Liu, H. (2001a). DNA array studies demonstrate convergent regulation of virulence factors by Cph1, Cph2, and Efg1 in Candida albicans. J. Biol. Chem. 276, 48988-48996

Lane, S., Zhou, S., Pan, T., Dai, Q., and Liu, H. (2001b). The basic helix-loop-helix transcription factor Cph2 regulates hyphal development in Candida albicans partly via TEC1. Mol. Cell. Biol. 21, 6418-6428

Lee, K., Rega, M., Watson, R., and Campbell, C. (1975). An amino acid liquid medium for the development of mycelial and yeast forms of Candida albicans. Sabouraudia 13, 148-153

Liu, H. (2001). Transcriptional control of dimorphism in Candida albicans. Curr. Opin. Microbiol. 4, 728-735

Lo, H.J., Kohler, J.R., DiDomenico, B., Loebenberg, D., Cacciapuoti, A., and Fink, G.R. (1997). Nonfilamentous C. albicans mutants are avirulent. Cell 90, 939-949

Lortholary, O., and Dupont, B. (1997). Antifungal prophylaxis during neutropenia and immunodeficiency. Clin. Microbiol. Rev. 10, 477-504

McCreath, K.J., Specht, C.A., and Robbins, P.W. (1995). Molecular cloning and characterization of chitinase genes from Candida albicans. Proc. Natl. Acad. Sci. USA 92, 2544-2548

Monod, M., Togni, G., Hube, B., and Sanglard, D. (1994). Multiplicity of genes encoding secreted aspartic proteinases in Candida species. Mol. Microbiol. 13, 357-368

Murad, A.M., et al. (2001a). Transcript profiling in Candida albicans reveals new cellular functions for the transcriptional repressors CaTup1, CaMig1, and CaNrg1. Mol. Microbiol. 42, 981-993

Murad, A.M., et al. (2001b). NRG1 represses yeast-hypha morphogenesis and hypha-specific gene expression in Candida albicans. EMBO J. 20, 4742-4752

Nishi, K., Park, C.S., Pepper, A.E., Eichinger, G., Innis, M.A., and Holland, M.J. (1995). The GCR1 requirement for yeast glycolytic gene expression is suppressed by dominant mutations in the SGC1 gene, which encodes a novel basic- helix-loop-helix protein. Mol. Cell. Biol. 15, 2646-2653

Pagano, A., Letourneur, F., Garcia-Estefania, D., Carpentier, J.L., Orci, L., and Paccaud, J.P. (1999). Sec24 proteins and sorting at the endoplasmic reticulum. J. Biol. Chem. 274, 7833-7840

Pahlman, A.K., Granath, K., Ansell, R., Hohmann, S., and Adler, L. (2001). The yeast glycerol 3-phosphatases Gpp1p, and Gpp2p are required for glycerol biosynthesis, and differentially involved in the cellular responses to osmotic, anaerobic, and oxidative stress. J. Biol. Chem. 276, 3555-3563

Paravicini, G., Mendoza, A., Antonsson, B., Cooper, M., Losberger, C., and Payton, M.A. (1996). The Candida albicans PKC1 gene encodes a protein kinase C homolog necessary for cellular integrity but not dimorphism. Yeast 12, 741-756

Pollard, T.D., Blanchoin, L., and Mullins, R.D. (2000). Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu. Rev. Biophys. Biomol. Struct. 29, 545-576

Porta, A., Ramon, A.M., and Fonzi, W.A. (1999). PRR1, a homolog of Aspergillus nidulans palF, controls pH-dependent gene expression and filamentation in Candida albicans. J. Bacteriol. 181, 7516-7523

Pring, M., Weber, A., and Bubb, M.R. (1992). Profilin-actin complexes directly elongate actin filaments at the barbed end. Biochemistry 31, 1827-1836

Rocha, C.R.C., Schroppel, K., Harcus, D., Marcil, A., Dignard, D., Taylor, B.N., Thomas, D.Y., Whiteway, M., and Leberer, E. (2001). Signaling through adenylyl cyclase is essential for hyphal growth, and virulence in the pathogenic fungus Candida albicans. Mol. Biol. Cell. 12, 3631-3643

Sata, M., Donaldson, J.G., Moss, J., and Vaughan, M. (1998). Brefeldin A-inhibited guanine nucleotide-exchange activity of Sec7 domain from yeast Sec7 with yeast and mammalian ADP ribosylation factors. Proc. Natl. Acad. Sci. USA 95, 4204-4208

Scherer, S. (2002). Gene discovery, and comparative genomics. Progress and prospects. In: Candida and Candidiasis, ed. R.A. Calderone, Washington, DC: ASM Press, 259-265.

Schmidt, A., and Geschke, U. (1996). Comparative virulence of Candida albicans strains in CFW1 mice and Sprague-Dawley rats. Mycoses 39, 157-160

Schweizer, A., Rupp, S., Taylor, B.N., Rollinghoff, M., and Schroppel, K. (2000). The TEA/ATTS transcription factor CaTec1p regulates hyphal development, and virulence in Candida albicans. Mol. Microbiol. 38, 435-445

Sentandreu, M., Nieto, A., Iborra, A., Elorza, M.V., Ponton, J., Fonzi, W.A., and Sentandreu, R. (1997). Cloning and characterization of CSP37, a novel gene encoding a putative membrane protein of Candida albicans. J. Bacteriol. 179, 4654-4663

Sharkey, L.L., McNemar, M.D., Saporito-Irwin, S.M., Sypherd, P.S., and Fonzi, W.A. (1999). HWP1 functions in the morphological development of Candida albicans downstream of EFG1, TUP1, and RBF1. J. Bacteriol. 181, 5273-5279

Stoldt, V.R., Sonneborn, A., Leuker, C.E., and Ernst, J.F. (1997). Efg1p, an essential regulator of morphogenesis of the human pathogen Candida albicans, is a member of a conserved class of bHLH proteins regulating morphogenetic processes in fungi. EMBO J. 16, 1982-1991

Su, L.F., Knoblauch, R., and Garabedian, M.J. (2001). Rho GTPases as modulators of the estrogen receptor transcriptional response. J. Biol. Chem. 276, 3231-3237

Teunissen, A.W., Holub, E., van der Hucht, J., van den Berg, J.A., and Steensma, H.Y. (1993). Sequence of the open reading frame of the FLO1 gene from Saccharomyces cerevisiae. Yeast 9, 423-427

Tzung, K.W., et al. (2001). Genomic evidence for a complete sexual cycle in Candida albicans. Proc. Natl. Acad. Sci. USA 98, 3249-3253

Watari, J., et al. (1994). Molecular cloning and analysis of the yeast flocculation gene FLO1. Yeast 10, 211-225

Wendland, J., and Philippsen, P. (2001). Cell polarity, and hyphal morphogenesis are controlled by multiple rho-protein modules in the filamentous ascomycete Ashbya gossypii. Genetics 157, 601-610

Whiteway, M. (2000). Transcriptional control of cell type, and morphogenesis in Candida albicans. Curr. Opin. Microbiol. 3, 582-588

Wurgler-Murphy, S.M., Maeda, T., Witten, E.A., and Saito, H. (1997). Regulation of the Saccharomyces cerevisiae HOG1 mitogen-activated protein kinase by the PTP2 and PTP3 protein tyrosine phosphatases. Mol. Cell. Biol. 17, 1289-1297

Zhan, X.L., Deschenes, R.J., and Guan, K.L. (1997). Differential regulation of FUS3 MAP kinase by tyrosine-specific phosphatases PTP2/PTP3 and dual-specificity phosphatase MSG5 in Saccharomyces cerevisiae. Genes Dev. 11, 1690-1702
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top