Login | Register

Arbitrary Keyword Spotting in Handwritten Documents


Arbitrary Keyword Spotting in Handwritten Documents

Haji, Mehdi (2012) Arbitrary Keyword Spotting in Handwritten Documents. PhD thesis, Concordia University.

[thumbnail of Haji_PhD_S2012.pdf]
Text (application/pdf)
Haji_PhD_S2012.pdf - Accepted Version


Despite the existence of electronic media in today’s world, a considerable amount of written communications is in paper form such as books, bank cheques, contracts, etc. There is an increasing demand for the automation of information extraction, classification, search, and retrieval of documents. The goal of this research is to develop a complete methodology for the spotting of arbitrary keywords in handwritten document images.
We propose a top-down approach to the spotting of keywords in document images. Our approach is composed of two major steps: segmentation and decision. In the former, we generate the word hypotheses. In the latter, we decide whether a generated word hypothesis is a specific keyword or not. We carry out the decision step through a two-level classification where first, we assign an input image to a keyword or non-keyword class; and then transcribe the image if it is passed as a keyword. By reducing the problem from the image domain to the text domain, we do not only address the search problem in handwritten documents, but also the classification and retrieval, without the need for the transcription of the whole document image.
The main contribution of this thesis is the development of a generalized minimum edit distance for handwritten words, and to prove that this distance is equivalent to an Ergodic Hidden Markov Model (EHMM). To the best of our knowledge, this work is the first to present an exact 2D model for the temporal information in handwriting while satisfying practical constraints.
Some other contributions of this research include: 1) removal of page margins based on corner detection in projection profiles; 2) removal of noise patterns in handwritten images using expectation maximization and fuzzy inference systems; 3) extraction of text lines based on fast Fourier-based steerable filtering; 4) segmentation of characters based on skeletal graphs; and 5) merging of broken characters based on graph partitioning.
Our experiments with a benchmark database of handwritten English documents and a real-world collection of handwritten French documents indicate that, even without any word/document-level training, our results are comparable with two state-of-the-art word spotting systems for English and French documents.

Divisions:Concordia University > Gina Cody School of Engineering and Computer Science > Computer Science and Software Engineering
Item Type:Thesis (PhD)
Authors:Haji, Mehdi
Institution:Concordia University
Degree Name:Ph. D.
Program:Computer Science
Date:17 April 2012
Thesis Supervisor(s):Bui, Tien D. and Suen, Ching Y.
Keywords:Handwriting, Document Image Processing, Keyword Spotting, Recognition, Margin Removal, Noise Removal, Line Extraction, Word Segmentation, Character Segmentation, Character Recognition, Generalized Minimum Edit Distance
ID Code:973970
Deposited On:20 Jun 2012 18:40
Last Modified:18 Jan 2018 17:37
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top