Login | Register

Efficient and scalable indexing techniques for sequence data management

Title:

Efficient and scalable indexing techniques for sequence data management

Thamildurai, Anand (2007) Efficient and scalable indexing techniques for sequence data management. Masters thesis, Concordia University.

[thumbnail of MR34725.pdf]
Preview
Text (application/pdf)
MR34725.pdf - Accepted Version
3MB

Abstract

Sequence data is one of the rapidly growing types of data. New efficient and scalable techniques are needed to support fast access to this type of data. We study indexing techniques for sequence data, especially biological sequence data. The existing solutions for this type of data either support efficient index construction for long sequences or support fast search, but not both. We propose two new indexing techniques, Suffix Tree Top-Down 64 bit and Suffix Tree Depth-First 64 bit, which offer a tradeoff between scalable index construction, index size, and support of fast search. They differ in the order in which the index nodes are recorded but have similar performance. We compare our techniques with the best known existing techniques, which are based on suffix trees (TDD) or suffix arrays (ESA). The results of our extensive experiments show that while our proposed techniques have a slightly slower construction time for small sequences and larger index size compared to TDD, they outperform TDD in search. We further show that for very large sequences, such as the human genome (about 3GB), our techniques are superior to TDD due to the use of dynamic buffering and better index representation. Compared to the most search efficient in-memory indexing technique, ESA, our proposed techniques are slower in construction but have comparable index size and search performance. The main advantage of our techniques over ESA is that they are disk-based and can handle large sequences.

Divisions:Concordia University > Gina Cody School of Engineering and Computer Science > Computer Science and Software Engineering
Item Type:Thesis (Masters)
Authors:Thamildurai, Anand
Pagination:x, 98 leaves : ill. ; 29 cm.
Institution:Concordia University
Degree Name:M. Comp. Sc.
Program:Computer Science and Software Engineering
Date:2007
Thesis Supervisor(s):Shiri, Nematollaah
Identification Number:LE 3 C66C67M 2007 T53
ID Code:975347
Deposited By: Concordia University Library
Deposited On:22 Jan 2013 16:06
Last Modified:13 Jul 2020 20:07
Related URLs:
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top