Kircanski, Aleksandar, Shen, Yanzhao, Wang, Gaoli and Youssef, Amr M. (2013) Boomerang and Slide-Rotational Analysis of the SM3 Hash Function. pp. 304-320. ISSN 0302-9743
Preview |
Text (application/pdf)
156kByoussef2013.pdf - Accepted Version |
Official URL: http://dx.doi.org/10.1007/978-3-642-35999-6_20
Abstract
SM3 is a hash function, designed by Xiaoyun Wang et al. and published by the Chinese Commercial Cryptography Administration Office for the use of electronic authentication service system. The design of SM3 builds upon the design of the SHA-2 hash function, but introduces additional strengthening features. In this paper, we present boomerang distinguishers for the SM3 compression function reduced to 32 steps out of 64 steps with complexity 214.4, 33 steps with complexity 232.4, 34 steps with complexity 253.1 and 35 steps with complexity 2117.1. Examples of zero-sum quartets for the 32-step and 33-step SM3 compression function are provided. We also point out a slide-rotational property of SM3-XOR, which exists due to the fact that constants used in the steps are not independent.
Divisions: | Concordia University > Gina Cody School of Engineering and Computer Science > Concordia Institute for Information Systems Engineering |
---|---|
Item Type: | Article |
Refereed: | Yes |
Authors: | Kircanski, Aleksandar and Shen, Yanzhao and Wang, Gaoli and Youssef, Amr M. |
Date: | 2013 |
Digital Object Identifier (DOI): | 10.1007/978-3-642-35999-6_20 |
Keywords: | Cryptanalysis Boomerang attack Rotational attack Slide attack SM3 |
ID Code: | 976946 |
Deposited By: | Danielle Dennie |
Deposited On: | 11 Mar 2013 14:22 |
Last Modified: | 18 Jan 2018 17:43 |
References:
1.Specification of SM3 cryptographic hash function (in Chinese), http://www.oscca.gov.cn/UpFile/20101222141857786.pdf/2.Zou, J., Wu, W., Wu, S., Su, B., Dong, L.: Preimage Attacks on Step-Reduced SM3 Hash Function. In: Kim, H. (ed.) ICISC 2011. LNCS, vol. 7259, pp. 375–390. Springer, Heidelberg (2012)
3.Aumasson, J.P.: Zero-sum Distinguishers. Rump session talk at CHES 2009 (2009),
http://131002.net/data/papers/AM09.pdf
4.Wagner, D.: The Boomerang Attack. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 156–170. Springer, Heidelberg (1999)»
5.Biryukov, A., Nikolić, I., Roy, A.: Boomerang Attacks on BLAKE-32. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 218–237. Springer, Heidelberg (2011)»
6.Lamberger, M., Mendel, F.: Higher-Order Differential Attack on Reduced SHA-256. Cryptology ePrint Archive: Report 2011/037, » http://eprint.iacr.org/
7.Biryukov, A., Lamberger, M., Mendel, F., Nikolić, I.: Second-Order Differential Collisions for Reduced SHA-256. In: Lee, D.H. (ed.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 270–287. Springer, Heidelberg (2011)»
8.Mendel, F., Nad, T.: Boomerang Distinguisher for the SIMD-512 Compression Function. In: Bernstein, D.J., Chatterjee, S. (eds.) INDOCRYPT 2011. LNCS, vol. 7107, pp. 255–269. Springer, Heidelberg (2011)»
9.Sasaki, Y.: Boomerang Distinguishers on MD4-Family: First Practical Results on Full 5-Pass HAVAL. In: Miri, A., Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 1–18. Springer, Heidelberg (2012)»
10.Sasaki, Y., Wang, L.: 2-Dimension Sums: Distinguishers Beyond Three Rounds of RIPEMD-128 and RIPEMD-160, » http://eprint.iacr.org/2012/049.pdf
11.Aumasson, J.-P., Çalık, Ç., Meier, W., Özen, O., Phan, R.C.-W., Varıcı, K.: Improved Cryptanalysis of Skein. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 542–559. Springer, Heidelberg (2009)»
12.Leurent, G., Roy, A.: Boomerang Attacks on Hash Function Using Auxiliary Differentials. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 215–230. Springer, Heidelberg (2012)»
13.Chen, J., Jia, K.: Improved Related-Key Boomerang Attacks on Round-Reduced Threefish-512. In: Kwak, J., Deng, R.H., Won, Y., Wang, G. (eds.) ISPEC 2010. LNCS, vol. 6047, pp. 1–18. Springer, Heidelberg (2010)»
14.Yu, H., Chen, J., Wang, X.: The Boomerang Attacks on the Round-Reduced Skein-512. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 288–304. Springer, Heidelberg (2012)
15.Khovratovich, D., Nikolić, I.: Rotational Cryptanalysis of ARX. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 333–346. Springer, Heidelberg (2010)»
16.Biryukov, A., Wagner, D.: Slide Attacks. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 245–259. Springer, Heidelberg (1999)»
17.Yoshida, H., Biryukov, A.: Analysis of a SHA-256 Variant. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 245–260. Springer, Heidelberg (2006)»
18.Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)»
19.Wagner, D.: A Generalized Birthday Problem. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 288–303. Springer, Heidelberg (2002)
Repository Staff Only: item control page