Moore, Travis Roger (2013) Quantifying the extent of change in extreme weather events in response to global warming. Masters thesis, Concordia University.
Preview |
Text (application/pdf)
2MBMoore_MSc_F2013.pdf - Accepted Version Available under License Spectrum Terms of Access. |
Abstract
Weather extremes have been documented in the context of a warming climate in association with increasing greenhouse gas concentrations. However, there remains much uncertainty as to how these extreme events will respond to future climate warming. In particular, climate modeling studies have predicted changes in the frequency and severity of weather extremes, and the range of changes reported in the literature is very large, and sometimes contradictory, as the nature of many extreme weather phenomena is not fully understood. This uncertainty stems, in part, from the limited ability of coarse resolution climate models to accurately measure and simulate weather events that occur at the microscale level, such as tornadoes and severe thunderstorms. However, some of the range of results reported originates simply from a wide variety of scenarios of future climate change used to drive climate model simulations, which hampers our ability to make generalizations about predicted changes in extreme weather events. The goal of this study is to conduct a meta-analysis of the literature on projected future extreme weather events, so as to identify trends, using global mean temperature change as a common frame of reference. Results indicate that global warming could significantly alter the behavior of multiple extreme weather events, such as mid-latitude drought, severe thunderstorms and tornadoes, as well as the selected important meteorological variables that engender them, into the 21st century.
Divisions: | Concordia University > Faculty of Arts and Science > Geography, Planning and Environment |
---|---|
Item Type: | Thesis (Masters) |
Authors: | Moore, Travis Roger |
Institution: | Concordia University |
Degree Name: | M. Sc. |
Program: | Geography, Urban & Environmental Studies |
Date: | 17 August 2013 |
Thesis Supervisor(s): | Matthews, Damon |
Keywords: | Extreme Weather Global Warming Climate Change |
ID Code: | 977599 |
Deposited By: | TRAVIS MOORE |
Deposited On: | 26 Nov 2013 17:22 |
Last Modified: | 18 Jan 2018 17:44 |
Repository Staff Only: item control page