Login | Register

Optical Characterization of Plasmonic Anisotropic Nanostructures by Modeling and Spectroscopic Verification


Optical Characterization of Plasmonic Anisotropic Nanostructures by Modeling and Spectroscopic Verification

Stoenescu, Stefan (2013) Optical Characterization of Plasmonic Anisotropic Nanostructures by Modeling and Spectroscopic Verification. PhD thesis, Concordia University.

[thumbnail of Stoenescu_PhD_S2014.pdf]
Text (application/pdf)
Stoenescu_PhD_S2014.pdf - Accepted Version


This thesis attempts to characterize the optical properties of plasmonic anisotropic nanostructures through modeling and verification. Two nanostructures with important applications are selected for characterization. First, uniaxially aligned gold nanorods (AuNRs) embedded in polyvinyl alcohol (PVA) films are realized by determining suitable heating conditions during stretching, using PVA of high molecular weight mixed with plasticizer to improve the plastic deformability, and stretching the composite film. A high stretch ratio of seven is attained and the induced alignment of the rods is quantified statistically by an order parameter of 0.92 and an average angle of 3.5°. The stretched composite film is shown to have dichroic optical properties, which confirmed the good alignment. Since the statistical quantification requires destructive examinations, a novel non-destructive method is developed based on a probabilistic approach, computational simulations, and spectrometric measurements. The new method yields results in agreement with the statistical method and applies to all dichroic particles. The second nanostructure is a gold nanostar (AuNS) – polydimethylsiloxane (PDMS) composite platform. This nanostructure is characterized by using a typical AuNS of average dimensions and idealized as consisting of a sphere and radially oriented truncated cones representing its core and branches. Using branches defined parametrically by their number, length, aperture angle and orientation, and gradually attaching branches to a core, their ensemble spectra of increasing complexity are simulated. The absorptive contribution of each component is analyzed, demonstrating the large tunability of the AuNS and allowing for finding the most effective way to tune its fundamental resonant excitation. Using plasmon hybridization theory, the plasmonic interaction between structural elements is demonstrated in three different geometries.

Divisions:Concordia University > Gina Cody School of Engineering and Computer Science > Mechanical and Industrial Engineering
Item Type:Thesis (PhD)
Authors:Stoenescu, Stefan
Institution:Concordia University
Degree Name:Ph. D.
Program:Mechanical Engineering
Date:December 2013
Thesis Supervisor(s):Packirisamy, Muthukumaran and Truong, Vo-Van
Keywords:Aligned nanorods, non-destructive quantification of alignment, gold nanorod - polymer composite film, FDTD absorbance simulation, gold nanostars absorbaance simulation
ID Code:978213
Deposited On:16 Jun 2014 13:49
Last Modified:18 Jan 2018 17:46



Ahmed W., Kooij ES, van Silfhout A, Poelsema B., Quantitative Analysis of Gold Nanorod Alignment after Electric Field-Assisted Deposition, (2009), Nano Letters, Vol. 9, No. 11, 3786-3794

Alkilany, A. M., Thompson, L.B., Boulos, S.P., Sisco, P. N., Murphy, C. J., “Gold nanorods: Their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions”, Advanced Drug Delivery Reviews, 64, 190–199, (2012)

Anker J. N., Hall W.P., Lyandres O, Shah N.C. , Zhao J., and Van Duyke R.P., “Biosensing with plasmonic nanosensors”, Nature Materials, Vol 7 , June 2008

Ashcroft N. W., Mermin N. D, Solid State Physics, (1976), (Philadelphia, Pennsylvania: Saunders College)

Berciaud S., Cognet L., Tamarat P. and Lounis B., “Observation of Intrinsic Size Effects in the Optical Response of Individual Gold Nanoparticles”, Nano Letters, Vol. 5, No. 3, 515-518, (2005)

Bérenger J.-P., “A perfectly matched layer for the absorption of electromagnetic waves, Journal of Computational Physics”, 114 (1994) 185–200.

Bohren C. F., Huffman D.R., (1983). Absorption and Scattering of Light by Small Particles, John Wiley & Sons, Inc.

Boyd R., “Non-linear Optics”, Academic Press, 2008

Brandl D. W. and Nordlander P.,” Plasmon modes of curvilinear metallic core/shell particles”, The Journal of Chemical Physics 126, 144708 (2007)

Brioude A., Jiang X. C., and Pileni M. P., “Optical Properties of Gold Nanorods: DDA Simulations Supported by Experiments“, J. Phys. Chem. B 109, 13138 (2005).

Callister W.d. and Rethwisch D. G., (2010), Materials Science and Engineering - An Introduction, John Wiley & Sons, Inc.

Coronado E.A. and Schatz G.C., “Surface plasmon broadening for arbitrary shape nanoparticles: A geometrical probability approach”, J. Chem. Phys. Vol. 119, Nr 7, (2003)

Devore J.L., (2012), Probability and Statistics for Engineering and the Sciences, Brooks/Cole

Fei Pei F., Song Wu, Gang Wang, Ming Xu, Song-You Wang and Liang-Yao Chen, “Electronic and Optical Properties of Noble Metal Oxides M2O, (M = Cu, Ag and Au): First-principles Study”, J. Korean Phys. Soc., Vol. 55, No. 3, September 2009, pp. 1243-1249

Finch C. A., (1973), Polyvinyl alcohol, properties and applications, Wiley, New York

Genzel L., Martin T.P., Kreibig U., “Dielectric Function and Plasma Resonances of Small Metal Particles”, Z. Physik B 21, 339- 346, (1975)

Guo C., Yin S., Yu H., Liu S., Dong Q., Goto T., Zhang Z., Li Y., and Sato T., “Photothermal ablation cancer therapy using homogeneous CsxWO3 nanorods with broad near-infrared absorption”, Nanoscale, 5, 6469, (2013)

Greffet J.J., Ch.4 in “Plasmonics. From Basics to Advanced Topics”, Edited by Enoch, S; Bonod, N., Springer, 2012

Hagan D. J., Handbook of Optics, The McGraw-Hill Companies, Inc. , 3-rd Ed., Vol. IV, Ch. 13 (2010)

Hao F., Nehl C. L., Hafner J. H., and Nordlander P., “Plasmon Resonances of a Gold Nanostar”, Nano Letters, Vol. 7, No. 3, 729-732, (2007)

Hecht E., “Optics”, Pearson Education, 2002

Hu Z., Fischbein M.D., Querner C., and Drndic M., Electric-Field-Driven Accumulation and Alignment of CdSe and CdTe Nanorods in Nanoscale Devices, Nano Letters, Vol. 6, No. 11, 2585-2591, (2006)

Huang X, Neretina S, and El-Sayed M.A., (2009), Adv. Mater., 21, 4880–4910

Huang, X., El-Sayed, I. H., Qian, W. and El-Sayed, M.A., “Cancer Cell Imaging and Photothermal Therapy in the Near-Infrared Region by Using Gold Nanorods”, J. Am. Chem. Soc. 128, 21152120, (2006)

Hutter E. & Fendler J.H., ‘’Expoitation of Localized Surface Plasmon Resonance’’, Adv. Mater. 16, No.19, 2004;

Johnson P.B. and Christy R.W., “Optical Constants of the Noble Metals”, Phys. Rev. B 6, 4370–4379, (1972)

Kittel C., (2005) “Introduction to Solid state physics”, John Wiley & Sons, Inc.
Sönnichsen C., Franzl T., Wilk T., von Plessen G., and Feldmann J., (2002), Physical Review Letters, Vol 88, Nr 7, (5)

Klar T., Perner M., Grosse S., von Plessen G., Spirkl W., and Feldmann J., “Surface-Plasmon Resonances in Single Metallic Nanoparticles”, Physical Review Letters, Vol. 80, 19, 4249-52, (1998)

Kreibig U., Gartz M., Hilger A. and Neuendorf R., “Interfaces In Nanostructures: Optical Investigations On Cluster-Matter”, NanoStructured Materials, Vol. 11, No. 8, pp. 1335 (1999)

Kreibig U., “Interface-Induced Dephasing Of Mie Plasmon Polaritons”, Appl Phys B 93: 79 (2008)

Kreibig U. and Vollmer M., “Optical properties of metal clusters”, Springer-Verlag Berlin Heidelberg p. 22, (1995)

Kumar P.S., Santos P.I., Gonzalez B.R, de Abajo F J G and Liz-Marzan L.M., High-yield synthesis and optical response of gold nanostars, Nanotechnology, 19, doi:10.1088/0957-4484/19/01/015606, 1-5, 2008

Kumar R., Singh A.P., Kapoor A., Tripathi K.N., (2004) SPIE Proceedings, Optical Engineering 43(09), Vol. 43, 2134-2142, September

Li J., Liu S., Liu Y., Zhou F., and Lia Z-Y.,” Anisotropic and enhanced absorptive nonlinearities in a macroscopic film induced by aligned gold nanorods”, Applied Physics Letters 96, 263103-1 (2010)

Link S., Mohamed M. B., and El-Sayed M. A., “Simulation of the Optical Absorption Spectra of Gold Nanorods as a Function of Their Aspect Ratio and the Effect of the Medium Dielectric Constant” J. Phys. Chem. B, 103, 3073 (1999)

Link S. and El-Sayed M. A., “Additions and Corrections”, J. Phys. Chem. B, Vol. 109, No. 20, 10531, (2005)

Liu M. and Guyot-Sionnest P., “Synthesis and Optical Characterization of Au/Ag Core/Shell Nanorods”, J. Phys. Chem. B, 108, 5882-5888, (2004)

Liu Y., Mills E.N. Composto R.J., Tuning optical properties of gold nanorods in polymer films through thermal reshaping, (2009), J. Mater. Chem., 19, 2704–2709

Maier S.A., “Plasmonics: fundamentals and applications”, Springer-Verlag New York, LLC, p.11, (2007)

Mieszawska A.J., Slawinski G.W, and Zamborini F.P., Directing the Growth of Highly Aligned Gold Nanorods through a Surface Chemical Amidation Reaction, J. Am. Chem. Soc., 128, 5622-5623(2006),

Mohr F., editor, “Gold Chemistry - Applications and Future Directions in the Life Sciences”, Wiley-VCH, p. 327, 2009

Murphy C. J., Sau T.K., Gole A.M., Orendorff C.J., Gao J., Gou L., Hunyadi S.E., and Tan Li (2005), J. Phys. Chem. B, 109, 13857-13870

Myroshnychenko V., -Fernandez J. R., Santos I.P., Funston A. M., Novo C., Mulvaney P., Liz-Marzan L.M. and F. Javier Garcıa de Abajo, Modeling the optical response of gold nanoparticles, Chem. Soc. Rev., 2008, 37, 1792–1805, DOI: 10.1039/b711486a

Noguez C., ”Surface Plasmons on Metal Nanoparticles: The Influence of Shape and Physical Environment”, J. Phys. Chem. C, 111, 3806-3819, (2007)

Novo C., Gomez D., Perez-Juste J., Zhang Z., Petrova H., Reismann M., Mulvaney P. and Hartland G. V., “Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study”, Phys. Chem. Chem. Phys., 8, 3540–3546, (2006)

Padilha L.A., Fontana J, Kohlgraf-Owens D, Moreira M, Webster S, Palffy-Muhoray P, Kik P.G, Hagan D. J, and Van Stryland E.W., “Linear and Nonlinear Optical Response of Aligned Gold Nanorods”, OSA/CLEO/IQEC, (2009)

Pelton M., Liu M., Park S., Scherer N. F., and Guyot-Sionnest P., Physical Review B 73, 155419 (2006)

Perez-Juste J., Pastoriza-Santos I., Liz-Marzan L. M., Mulvaney P., (2005), Optical control and patterning of gold-nanorods-poly(vinyl alcohol) films, Adv. Funct. Mater., 15, 1065-1071

Perez-Juste J., Pastoriza-Santos I., Liz-Marzan L. M., Mulvaney P., “Gold nanorods: Synthesis, characterization and applications”, Coordination Chemistry Reviews 249, 1870–1901, (2005)

Pollack G.L. and Stump D.R., “Electromagnetism”, (2002), Pearson Education Inc.

Prodan E. and Nordlander P., “Structural Tunability of the Plasmon Resonances in Metallic Nanoshells”, Nano Letters, Vol. 3, No. 4, 543-547, (2003)

Rodrıguez-Lorenzo L., Alvarez-Puebla R.A., Pastoriza-Santos I., Mazzucco S., Stephan O., Kociak M., Liz-Marzan L.M., and Garcıa de Abajo F. J., “Zeptomol Detection Through Controlled Ultrasensitive Surface-Enhanced Raman Scattering”, J. Am. Chem. Soc. 2009, 131, 4616–4618

Sabatini D. editor, “Leading edge nanotechnology. Research developments”, Nova Science Publishers Inc., 2007

Sandu T., (2012), Springer Science+Business Media B.V. 2012, J. Nanopart. Res. 14:905

Steele J.M., Grady N.K., Nordlander P. and Halas N.J., “Plasmon Hybridization in Complex Nanostructures”, in “Surface Plasmon Nanophotonics” by Brongersma M. L. & Kik P. G. (eds), Springer, p. 183, 2007

Sönnichsen C., Franzl T., Wilk T., von Plessen G., Feldmann J., Wilson O. and Mulvaney P., “Drastic Reduction of Plasmon Damping in Gold Nanorods“, Physical Review Letters, Vol 88, Nr 7, (2002)

Taflove A. and Hagness S.C.,” Computational Electrodynamics: The Finite-Difference Time-Domain Method”, Norwood, MA: Artech House, 2005

Thulstrup E.W., Thulstrup P.W., “Polarization Spectroscopic Studies of Ordered Samples”, Acta Chim. Slov., 52, 371–383, (2005)

Torres J. M., Bakken N., C.M. Stafford, Jian Li and Bryan D. Vogt, Thickness dependence of the elastic modulus of tris(8-hydroxyquinolinato)aluminium, Soft Matter, 2010, 6, 5783–5788.

Trigari S., Alessio Rindi, Giancarlo Margheri, Stefano Sottini, Giovanna Dellepiane and Emilia Giorgettia, Synthesis and modelling of gold nanostars with tunable morphology and extinction spectrum, J. Mater. Chem., 21, 6531- 6540, 2011

Truong V.V. and Scott G. D., “Optical constants of aggregated gold films”, J. Opt. Soc. Am., Vol. 66, No. 2, (1976)

van der Zande B. M. I., Page L, Hikmet R.A.M., van Blaaderen A, (1999), ”Optical Properties of Aligned Rod-Shaped Gold Particles Dispersed in Poly(vinyl alcohol) Films”, J. Phys. Chem. B, 103, 5761-5767, (1999)

van der Zande B. M. I., Koper G. J. M., and Lekkerkerker H.N.W., (1999), Alignment of Rod-Shaped Gold Particles by Electric Fields, J. Phys. Chem. B, 103, 5754-5760

Zhang, Z., Wang, J., Chen C., “Gold Nanorods Based Platforms for Light-Mediated Theranostics”, Theranostics, Vol. 3, Issue 3, 223-238, (2013)

Zhu J., Bai S-W., Zhao J-W., Li J-J, “Tunable optical limiting of gold nanorod thin films”, Appl. Phys. A 97: 431–436, (2009)

Zhukov V. P., Chulkov E. V. and Echenique P. M., “Lifetimes and inelastic mean free path of low-energy excited electrons in Fe, Ni, Pt, and Au: Ab initio GW+T calculations”, Phys. Rev. B, 73, 125105, (2006).

Yan B., Yang Y., and Wang Y., “Comments”, J. Phys. Chem. B, 107, 9159, (2003)

Yee, K.S., “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media”, IEEE transactions on antennas and propagation, Vol. AP-14, no. 3, 1966

Yu C. and Irudayaraj J., (2007), Biophysical Journal, Volume 93, 3684–3692

Yuan H., Khoury C., Hwang H, Wilson C. M., Grant G. A and Vo-Dinh T, “Gold nanostars: surfactant-free synthesis, 3D modelling, and two-photon photoluminescence imaging”, Nanotechnology 23, 075102 (9pp) (2012)

Wang X., Neff C., Zijlstra P., Chon J. W. M., Gu M., ” Five-dimensional optical recording mediated by surface plasmons in gold nanorods”, Nature, Vol 459, 410-413, (2009)

Wang Y., Teitel S., Dellago C, (2005), Nano Letters, Vol. 5, No. 11, 2174-2178

Willets, K. A. and Van Duyne, R. P., “Localized Surface Plasmon Resonance Spectroscopy and Sensing”, Annu. Rev. Phys. Chem. 58:267-297 (2007).

Wilson O., Wilson G.J.and Mulvaney P., “Laser Writing in Polarized Silver Nanorod Films”, Adv. Mater. 14, No. 13 (2002)
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top