Manikis, Fani (2015) New Solutions for Two-Cell Vortices. Masters thesis, Concordia University.
Preview |
Text (application/pdf)
5MBManikis_MASc_F2015.pdf - Accepted Version |
Abstract
Two celled incompressible vortices are known from the work of Sullivan (1959). This dissertation first extends the previously derived wider latitude, incompressible, steady two-cell vortex of Vatistas (1998) to account for the effects of time as it decays. Then, it is also broadened to simulate steady vortices where the density variation is included.
Based on the conservation of mass and momentum equations, a new method to analytically characterize two-cell decaying vortices is presented. The study shows that the core radius increases linearly with time, while the maximum velocity reduces hyperbolically. In comparison to Lamb (1932) - Oseen (1912) one-cell vortex, the dominant tangential velocity in the two-celled type is shown to decline considerably faster. Both effects are attributed to the increased viscous dissipation. Based on theoretical grounds, it is argued that the cause of the previously discovered vortex strength reduction in wing tip vortices with an externally imposed central jet is due to the switch of the one cell tip vortex into a two-cell, and not due to the added turbulence caused by the jet.
Because Sullivan’s vortex assumes an unbounded radial velocity in the radial direction, its extension to compressible kind, taking into account the convective heat transfer in the energy equation, is not possible without some very drastic simplifications concerning the problem. In this dissertation an alternate approach to the problem is offered where the previous weakness is absent. The earlier contribution of Vatistas (1998) vis-à-vis incompressible two-cell vortices is now generalized to account for density variation. The conservation equations of mass, momentum and energy are abridged assuming intense vortex conditions. The system of equations, describing the thermal side of the problem is brought into a closure via the inclusion of the equation of state for a calorically perfect gas. The temperature, density and pressure are then calculated using straightforward, readily available, numerical integration software.
It is found that along the converging flow direction, the temperature first decreases (in the outer cell), increases within the inner cell, and then flattens close to the vortex center. The cause of this effect is identified to be due to the interplay of dilation-contraction and mechanical dissipation in the infinitesimal fluid element. Density and pressure near the axis, where the whirl is cold, are shown to be under sub ambient conditions, i.e. the gas density is thinner and the pressure is under vacuum conditions. All these properties depend strongly on the vortex Mach number.
Divisions: | Concordia University > School of Graduate Studies |
---|---|
Item Type: | Thesis (Masters) |
Authors: | Manikis, Fani |
Institution: | Concordia University |
Degree Name: | M.A. Sc. |
Program: | Mechanical Engineering |
Date: | 26 August 2015 |
Thesis Supervisor(s): | Vatistas, Georgios H. |
Keywords: | vortex model, two-cell vortices, compressible vortices, decaying vortices |
ID Code: | 980336 |
Deposited By: | FANI MANIKI |
Deposited On: | 03 Nov 2015 15:31 |
Last Modified: | 18 Jan 2018 17:51 |
References:
Aboelkassem, Y., and Vatistas G. H. (2007). New Model for Compressible Vortices. Journal of Fluid Engineering, 29(8), 1073-1079.Ardalan, K., Meiron, D. I., and Pullin, D. I. (1995, Oct.). Steady Compressible Vortex Flows: The Hollow-Core Vortex Array. Journal of Fluid Mechanics, 301, 1-17.
Bagai, A., and Leishman, G. J. (1993). Flow Visualization of Compressible Vortex Structures Using Density Gradient Technique. Experiments in Fluids, 15(6), 431-442.
Bellamy-Knights, P. G. (1980, Aug.). Viscous Compressible Heat Conducting Spiraling Flow. Quarterly Journal of Mechanics and Applied Mathematics, 33, 321-336.
Blustein, H. B., Weiss, C. C., and Pazmany, A. L. (2004). Doppler Radar Observations of Dust Devils in Texas. Mon. Wea. Rev. 132, 209-224.
Brown, S. N. (1965). The Compressible Inviscid Leading Edge Vortex. Journal of Fluid Mechanics, 22(1), 17-32.
Burgers, J. M. (1948). A Mathematical Model Illustrating the Theory of Turbulence. Advances in Applied Mechanics, 1, 171-199.
Cattafesta, L. N., and Settles, G. S. (1992). Experiments on Shock/Vortex Interaction. AIAA Paper 92-0315.
Chiocchia, G. (1989). A Hodograph Approach to the Rotational Compressible Flow of an Ideal Fluid. Quarterly of Applied Mathematics, 47, 513-528.
Colonius, T., Lele, S. K., and Moin, P. (1991, Sept.). The Free Compressible Viscous Vortex. Journal of Fluids Mechanics, 230, 45-73.
Eshita, J. I. (2014). Analysis of New Multi Cellular Vortex Model, Concordia Univerisity, Montreal
Faler, J. H., and Leibovish, S. (1977). Disturbed States of Vortex Flow and Vortex Breakdown. Physics Fluids, 20, 1385-1400.
Hall, M. G. (1966). The Structure of Concentraded Vortex Cores. Progress in Aerospace Sciences, 7(1), 53-110.
Hamel, G. (1916). Spiralformige bewegung zaher Flussigkeiten. Jahresber. Dt. Mathematiker- Vereinigung, 25, 34-60.
Han, Y. Q., Leishman, J. G., and Coyone, A. J. (1997). Measuraments of the Velocity and Turbulence Structure of a Rotor Tip Vortex. AIAA J., 35(3), 477-485.
Helmholtz, H. (1858). Uber die Integrale der Hydrodynamischen Gleichungen, Welche den Wilbelbewegungen Entsprechen, Journal für die Reine und Angewandte Mathematik, 55, 25-55.
Hollingworth, M. A., and Richards, E. J. (Nov. 1955). A Schlieren Study of the Interaction Between a Vortex and a Shockwave in a Shock Tube.
Howard, L. N., and Matthews, D. L. (1956). On the Vortices Produced in Shock Diffraction. Journal of Applied Physics, 27(3), 223-231.
Jacquin, L., and Pantano, C. (2002). On the Persistence of Trailing Vortices. Journal of Fluid Mechanics, 471, 159-168.
Kalhoran, I. M., and Smart, M. K. (2000). Aspects of Shock Wave-Induced Vortex Breakdown. Progress in Aerospace Sciences, 36(1), 63-95.
Lam, H. (1993). An Experimental Investigitation and Dimensional Analysis pf Confined Vortex Flows. (Vol. Ph.D Thesis). Montreal, Canada: Department of Mechanical Enineering, Concordia University.
Lamb, H. (1932). Hydrodynamics. Cambridge, UK: Cambridge Univ. Press.
Lee Wen-Chau, and Wurman J. (2005). Diagnased Three-Dimensional Axisymmetric Structure of the Mulhall Tornado on May 1999. J. Atmos. Sci., 62, 2373-2393.
Mack, L. (1960). The Compressible Viscous Heat-Conducting Vortex. J. Fluid Mech., 8, 284-292.
Mandella, M. J. (1987). Experimental and Analytical Studies of Compressible Vortices. (Vol. Ph.D. Thesis). Stanford, Stanford University: Dept. of Applied Physics.
Meager, A. (1961). Approximate Solution of Insentropic Swirling Flow Through a Nozzle. ARS Journal, 32, 1140-1148.
Oseen, C. W. (1912). Uber Wirbelbewegune in einer Reiben-Den Flussigkeit. Arl. Mat. Astrom. Fys., 7, 14-21.
Perez-Saborid, M., Herrada, M. A., Gomez-Barea, A., and Barrero, A. (2002, Nov.). Downstream of Unconfined Vortices: Mechanical and Thermal Aspects. Journal of Fluid Mechanics, 471, 51-70.
Prichard, W. (1970). Solitary Waves in Rotating Fluids. Journal of Fluid Mechanics, 42(1), 61-83.
Ragsdale, R. G. (1960). NASA Research on the Hydrodynamics of the Gaseous Vortex Reactor. NASA TN D-288.
Ramesh, K., Gopalarathnam, A., Granlund, K., V.Ol. M., and Edwards. J. R. (2014). Discrete-vortex method with novel shedding criterion for unsteady aerofoil flows with intermittent leading-edge vortex shedding. Journal of Fluid Mechanics, 751, 500-538.
Rankine, W. J. (1858). Manual of Applied Mechanics. London: C. Griffin Co.
Robertson, J. M. (1966). HHydrodynamics in Theory and Application. Engelwood Cliffs, Prentice-Hall Inc.
Roschke, E. J. (1966). Experimantal Investigation of a Confined, Jet-Driven Vortex Chamber. NASA CR-78550.
Rott, N. (1959). On the Viscous Core of a Line Vortex 2. Zeitschrift fur Angewandte Mathematik und Physik (1982), 10, 73-81.
Rusak, Z., and Lee, J. H. (2004, Feb.). On the Stability of a Compressible Axissymetric Rotating Flow in a Pipe. Journal of Fluid Mechanics, 501, 25-42.
Scully, M. (1975). Computation of Helicopter Rotor Wake Geometry and its Influence on Rotor Harmonic Airloads. Massachusets Institute of Technology. Aeroelastic and Structures Research Laboratory.
Sibulkin, M. (1961). Unsteady, Viscous, Circular Flow Part 1. The Line Impulse of Angular Momentum. Journal of Fluid Mechanics, 11(2), 291-308.
Sibulkin, M. (1962). Unsteady, Viscous, Circular Flow Part 3. Application to the Ranque-Hilish Vortex Tube. Journal of Fluid Mechanics, 12(2), 269-293.
Snedeker, R. S. (1972). Effect of Air Injection on the Torque Produced by a Trailing Votex. Journal of Aircraft, 9(9), 682-684.
Sullivan, R. (1959). A Two-cell Vortex Solution of the Navier-Stokes Equations. Journal of Aerospace Sciences, 26, 767-768.
Taylor, G. I. (1930). Recent work on the Flow of Compressible Fluids. Journal of the London Mathematical Society, 5, 224-240.
Van Tassel, E. L. (1955). The North Platte Valley tornado outbreak of June, 1955. Mon. Weather Rev., 83, 255-264.
Vatistas, G. H. (1998). New Model for Intense Self-Similar Vortices. Journal of Propulsion and Power, 14(4), 462-469.
Vatistas, G. H. (2004). The fundamental properties. Trans. CSME, 28, 43-58.
Vatistas, G. H., and Aboelkassem, Y. (2005, June). Time Decay of n Family of Vortices. AIIA Journal, 43(6).
Vatistas, G. H., and Aboelkassem, Y. (2006). Extension of the Incompressible n=2 Vortex into Compressible. AIAA Journal, 44(8).
Vatistas, G. H., and Aboelkassem, Y. (2006a, April). Space-Time Analogy of Self Similar Intense Vortices. AIIA Journal, 44(4).
Vatistas, G. H., Kozel, V., and Mih, C. W. (1991). A Simpler Model for Concentrated Models. Experiments in Fluids, 11, 73-76.
Vatistas, G. H., Panagiotakakos, G., and Manikis F. (2015, June). Extension of the simple Laminar n-Family of Vortices into Turbulent, Journal of Aircraft, (published online).
Von Ellenrieder, K., and Cantwell, B. J. (2000). Self-Similar Slightly Compressible Free Vortices. J. Fluid Mech., 423, 293-315.
Von Ellenriender, K., and Cantwell. B. J. (2000, Nov.). Self Similar Slightly Compressible Free Vortices. Journal of Fluid Mechanics, 423, 293-315.
Wilkins, F. M. (1964). The Role of Electrical Phenomena Associated Tornadoes. Journal of Geophysical Research, 69(12), 2435-2447.
Zhang Wei, and Sarkar Partha P. (2008). Effects of ground roughness on tordado-like vortex using PIV. Colorado: AAWE workshop, August 21-22, 2008, Vail, Colorado
Repository Staff Only: item control page