Login | Register

Removal of Arsenic from Contaminated Water by Granular Activated Carbon Embedded with Nano scale Zero-valent Iron

Title:

Removal of Arsenic from Contaminated Water by Granular Activated Carbon Embedded with Nano scale Zero-valent Iron

Chowdhury, Md. Rashadul Islam (2015) Removal of Arsenic from Contaminated Water by Granular Activated Carbon Embedded with Nano scale Zero-valent Iron. PhD thesis, Concordia University.

[thumbnail of Chowdhury_PhD_S2016.pdf]
Preview
Text (application/pdf)
Chowdhury_PhD_S2016.pdf - Accepted Version
Available under License Spectrum Terms of Access.
3MB

Abstract

This study investigated the removal of arsenic from groundwater by granular activated carbon (GAC) supported nano scale zero-valent iron (nZVI). GAC supported nZVI (nZVI/GAC) composite was synthesized by hydrolyzing a Fe(III) salt on GAC, reduced by NaBH4 and dried under vacuum. Synthesized nZVI/GAC was characterized using scanning electron microscopy (SEM) along with EDS, BET surface area analysis, X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy. The experimental results were produced through the batch and Rapid Small Scale Column Test (RSSCT). The adsorption depends on pH, initial concentration, and reaction time. Arsenite adsorption capacity varies from 800 to 1400 μg/g over the pH 2-11. Arsenate adsorption was higher (3000-3700 μg/g) over the acidic pH range 2-6.5. Among competitive ions, phosphate and silicate affected the most while sulfate, nitrate, chloride, fluoride, manganese, magnesium and calcium had insignificant impact. The experimental data were evaluated with Langmuir and Freundlich isotherms. The adsorption capacity for arsenate, calculated from Langmuir and Freundlich isotherms, were 5000 and 6000 µg/g, respectively at pH 4.5. The reaction kinetics followed the pseudo-second order model. The initial sorption rate (h), determined from pseudo-second order kinetic model, was 666 µg/g.min. The dynamic behaviour of the RSSCT was predicted by the HSDM model using the software FAST 2.0. From the RSSCT results, it was found that the number of bed volumes treated depends on the empty bed contact time (EBCT) as well as the initial arsenate concentration.
The regeneration of spent nZVI/GAC using 0.1M NaOH was effective as it desorbed 87% of adsorbed arsenic. The solid waste can be safely disposed of in a sanitary landfill without any treatment as the concentration of leached arsenate determined by TCLP was much lower than the regulatory limit. The arsenic removal mechanism was due to the combination of electrostatic and the complex formation, either monodentate or bidentate, between As(V) and nZVI corrosion products. The results indicated that nZVI/GAC is a promising adsorbent for arsenic removal.

Divisions:Concordia University > Gina Cody School of Engineering and Computer Science > Building, Civil and Environmental Engineering
Item Type:Thesis (PhD)
Authors:Chowdhury, Md. Rashadul Islam
Institution:Concordia University
Degree Name:Ph. D.
Program:Civil Engineering
Date:16 July 2015
Thesis Supervisor(s):Mulligan, Catherine
Keywords:Arsenic, adsorption, removal, water, activated carbon, zero-valent iron
ID Code:980921
Deposited By: Md Rashadul Islam Chowdhury
Deposited On:27 Oct 2022 13:47
Last Modified:27 Oct 2022 13:47

References:

Aksu, Z., & Gönen, F. (2004). Biosorption of phenol by immobilized activated sludge in a continuous packed bed: prediction of breakthrough curves. Process Biochemistry, 39(5), 599-613.
Al-Duri, B. & McKay, G. 1995. (eds), Adsorption Modeling and Mass Transfer, CRC, Boca Raton, FL, USA, pp 133-173.
Alowitz, M. J., & Scherer, M. M. (2002). Kinetics of nitrate, nitrite, and Cr (VI) reduction by iron metal. Environmental Science & Technology, 36(3), 299-306.
American Water Works Association Research Foundation (AWWARF). (2000). Arsenic Treatability Options and Evaluation of Residuals Management Issues, Amy, G.L., M. Edwards, P. Brandhuber, L. McNeill, M. Benjamin, F. Vagliasindi, K. Carlson, and J. Chwirka., Denver, CO.
Andreae, M. O. (1978). Distribution and speciation of arsenic in natural waters and some marine algae. Deep Sea Research, 25(4), 391-402.
Anirudhan, T. S., & Unnithan, M. R. (2007). Arsenic (V) removal from aqueous solutions using an anion exchanger derived from coconut coir pith and its recovery. Chemosphere, 66(1), 60-66.
Appelo, C. A. J., Van der Weiden, M. J. J., Tournassat, C., & Charlet, L. (2002). Surface complexation of ferrous iron and carbonate on ferrihydrite and the mobilization of arsenic. Environmental Science & Technology, 36(14), 3096-3103.
Aragon, A. R. (2004). Ph.D dissertation: Development of Small-Scale Column Testing Procedure for the Evaluation of Arsenic Adsorption Media, University of New Mexico.
Azcue, J. M. and Nriagu, J. O. 1994. Arsenic: Historical perspectives, in: Nriagu, J.O. (editor), Arsenic in the Environment, Part1: Cycling and Characterization, John Wiley & Sons, New York, NY, USA.
Azcue, J. M., & Nriagu, J. O. (1995). Impact of abandoned mine tailings on the arsenic concentrations in Moira Lake, Ontario. Journal of Geochemical Exploration, 52(1), 81-89.
Badruzzaman, M., & Westerhoff, P. (2005). “The Application of Rapid Small Scale Column Tests (RSSCTs) In Iron-based Pakecd Bed Arsenic Treatment Systems.” Advances in arsenic research: Integration of experimental and observational studies and implications for mitigation, ACS symposium series, New York City, NY, 146.
Ballantyne, J. M., & Moore, J. N. (1988). Arsenic geochemistry in geothermal systems. Geochimica et Cosmochimica Acta, 52(2), 475-483.
Banerjee, K., Helwick, R. P., & Gupta, S. (1999). A treatment process for removal of mixed inorganic and organic arsenic species from groundwater. Environmental Progress, 18(4), 280-284.
Bang, S., Johnson, M. D., Korfiatis, G. P., & Meng, X. (2005). Chemical reactions between arsenic and zero-valent iron in water. Water Research, 39(5), 763-770.
Belton, J. C., Benson, N. C., Hanna, M. L., & Taylor, R. T. (1985). Growth inhibitory and cytotoxic effects of three arsenic compounds on cultured Chinese hamster ovary cells. Journal of Environmental Science & Health Part A, 20(1), 37-72.
Benefield, L. D., Judkins, J. F., & Weand, B. L. (1982). Process Chemistry for Water and Wastewater Treatment. Prentice Hall Inc.
Berg, M., Tran, H. C., Nguyen, T. C., Pham, H. V., Schertenleib, R., & Giger, W. (2001). Arsenic contamination of groundwater and drinking water in Vietnam: a human health threat. Environmental Science & Technology, 35(13), 2621-2626.
Bhumbla, O. K. & Keefer, R. F. (1994). Arsenic Mobilization and Bioavailability in Soils. In: Arsenic in the Environment, Part I: Cycling and Characterization. 10. Nriagu (Ed.). New York: Wiley-Interscience, 51-82.
Borum, D. R. & Abernathy, C.O. (1994). In: Arsenic Exposure and Health Effects, Chappel, W.R., Abernathy, C.O., Cothern, C.R., Eds. Science and Technology Lett. Northwood, U.K.
Boyle, D. R., Turner, R. J. W., & Hall, G. E. M. (1998). Anomalous arsenic concentrations in groundwaters of an island community, Bowen Island, British Columbia. Environmental Geochemistry and Health, 20(4), 199-212.
Buche, B. D., & Owens, L. P. (1996). Removal of arsenic from ground water using granular activated carbon. In North American Water and Environment Congress & Destructive Water (pp. 1173-1177). ASCE.
Budinova, T., Petrov, N., Razvigorova, M., Parra, J., & Galiatsatou, P. (2006). Removal of arsenic (III) from aqueous solution by activated carbons prepared from solvent extracted olive pulp and olive stones. Industrial & Engineering Chemistry Research, 45(6), 1896-1901.
Caly, L., & LR, R. (1994). Interfacial chemistry and electrochemistry of carbon surfaces. Chemistry and Physics of Carbon, 24, 213-310.
Campbell, C. T., & Parker, S. C. (2002). The effect of size-dependent nanoparticles energetics on catalyst sintering. Science, 298, 811-814.
Cao, J., Wei, L., Huang, Q., Wang, L., & Han, S. (1999). Reducing degradation of azo dye by zero-valent iron in aqueous solution. Chemosphere, 38(3), 565-571.
Capek, I. (2004). Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions. Advances in Colloid and Interface Science, 110(1), 49-74.
Ćavar, S., Klapec, T., Grubešić, R. J., & Valek, M. (2005). High exposure to arsenic from drinking water at several localities in eastern Croatia. Science of the Total Environment, 339(1), 277-282.
Chang, Q., Lin, W., & Ying, W. C. (2010). Preparation of iron-impregnated granular activated carbon for arsenic removal from drinking water. Journal of Hazardous Materials, 184(1), 515-522.
Chen, H. W., Frey, M. M., Clifford, D., McNeill, L. S., & Edwards, M. (1999). Arsenic treatment considerations. Journal-American Water Works Association, 91(3), 74-85.
Chen, W., Parette, R., Zou, J., Cannon, F. S., & Dempsey, B. A. (2007). Arsenic removal by iron-modified activated carbon. Water Research, 41(9), 1851-1858.
Choi, H., Al-Abed, S. R., Agarwal, S., & Dionysiou, D. D. (2008). Synthesis of reactive nano-Fe/Pd bimetallic system-impregnated activated carbon for the simultaneous adsorption and dechlorination of PCBs. Chemistry of Materials, 20(11), 3649-3655.
Chowdhury, M. R. I., & Mulligan, C. N. (2011). Biosorption of arsenic from contaminated water by anaerobic biomass. Journal of Hazardous Materials, 190(1), 486-492.
Chwirka, J., Thompson, B. M., & Stomp III, J. M. (2000). Removing arsenic from groundwater. Journal of the American Water Works Association, 92(3), 79-88.
Clifford, D., & Ghurye, G. (2001). Oxidizing arsenic III to arsenic V for better removal. Water Quality Products, 3, 28-29.
Clifford, D. (1999). Ion Exchange and Inorganic Adsorption. Water Quality and Treatment:
A Handbook of Community Water Supplies. R. D. Letterman. New York, McGraw-Hill, Inc.
Coumans, C. (2003). Mining in Canada: the bigger picture. Presentation for Philippine
delegation to Ottawa, Canada.
Crittenden, J. C., Reddy, P. S., Arora, H., Trynoski, J., Hand, D. W., Perram, D. L., & Summers, R. S. (1991). Predicting GAC performance with rapid small-scale column tests. Journal-American Water Works Association, 83(1), 77-87.
Crittenden, J. C., Berrigan, J. K., Hand, D. W., & Lykins, B. (1987). Design of rapid fixed-bed adsorption tests for nonconstant diffusivities. Journal of Environmental Engineering, 113(2), 243-259.
Cullen, W. R., & Reimer, K. J. (1989). Arsenic speciation in the environment. Chemical Reviews, 89(4), 713-764.
Daus, B., Wennrich, R., & Weiss, H. (2004). Sorption materials for arsenic removal from water: a comparative study. Water Research, 38(12), 2948-2954.
David, S. B., & Allison, J. D. (1999). Minteqa2, an equilibrium metal speciation model: User’s manual 4.01. Environmental Research laboratory, US Environmental Protection Agency: Athens, GA.
Davis, J. A., James, R. O., & Leckie, J. O. (1978). Surface ionization and complexation at the oxide/water interface: I. Computation of electrical double layer properties in simple electrolytes. Journal of Colloid and Interface Science, 63(3), 480-499.
Demirbaş, O., Alkan, M., & Doğan, M. (2002). The removal of Victoria blue from aqueous solution by adsorption on a low-cost material. Adsorption, 8(4), 341-349.
Deng, B., Caviness, M. & Gu, Z. (2005). Arsenic removal by activated carbon-based materials. In Advances in Arsenic Research: Integration of Experimental and Observational Studies and Implications for Mitigation, Vlassopoulos, D., Benning, L., Meng, X., O’Day, P., Eds.; ACS Symposium Series; American Chemical Society: Washington, DC, USA.
Dixon, H. B. (1996). The biochemical action of arsonic acids especially as phosphate analogues. Advances in Inorganic Chemistry, 44, 191-227.
Domenico, P. A., & Schwartz, F. W. (1998). Physical and chemical hydrogeology (Vol. 44). New York: Wiley.
Domingo, J. L. (1994). Metal‐induced developmental toxicity in mammals: A review. Journal of Toxicology and Environmental Health, Part A Current Issues,42(2), 123-141.
Dong, H., Guan, X., & Lo, I. M. (2012). Fate of As (V)-treated nano zero-valent iron: determination of arsenic desorption potential under varying environmental conditions by phosphate extraction. Water research, 46(13), 4071-4080.
Drever, J. I. (1997). The Geochemistry of Natural Waters: Surface and Groundwater Environments.
Driehaus, W., Jekel, M., & Hildebrandt, U. (1998). Granular ferric hydroxide-a new adsorbent for the removal of arsenic from natural water. Aqua, 47, 30-35.
Edwards, M. (1994). Chemistry of arsenic removal during coagulation and Fe-Mn oxidation. Journal-American Water Works Association, 86(9), 64-78.
Eguez, H. E., & Cho, E. H. (1987). Adsorption of arsenic on activated charcoal. JOM, 39(7), 38-41.
Elliott, D. W., & Zhang, W. X. (2001). Field assessment of nanoscale bimetallic particles for groundwater treatment. Environmental Science & Technology, 35(24), 4922-4926.
European Commission Directive. (1998). Related with drinking water quality intended for human consumption. 98/831EC, Brussels, Belgium.
Farrell, J., Wang, J., O'Day, P., & Conklin, M. (2001). Electrochemical and spectroscopic study of arsenate removal from water using zero-valent iron media. Environmental Science & Technology, 35(10), 2026-2032.
Faust, S. D., & Aly, O. M. (1987). Adsorption Processes for Water Treatment. Boston: Butterworth.
Fendorf, S., Eick, M. J., Grossl, P., & Sparks, D. L. (1997). Arsenate and chromate retention mechanisms on goethite. 1. Surface structure. Environmental Science & Technology, 31(2), 315-320.
Fields, K., Chen, A. S., Wang, L., & Sorg, T. J. (2000). Arsenic removal from drinking water by iron removal plants. National Risk Management Research Laboratory, Office of Research and Development, US Environmental Protection Agency.
Fierro, V., Muñiz, G., Gonzalez-Sánchez, G., Ballinas, M. L., & Celzard, A. (2009). Arsenic removal by iron-doped activated carbons prepared by ferric chloride forced hydrolysis. Journal of Hazardous Materials, 168(1), 430-437.
Figueiredo, J. L., Pereira, M. F. R., Freitas, M. M. A., & Orfao, J. J. M. (1999). Modification of the surface chemistry of activated carbons. Carbon, 37(9), 1379-1389.
Fowler, B. A. (1977). Toxicology of environmental arsenic, In: Toxicology of Trace Elements. Advances in Modern Toxicology, Vol. 2, pp. 79-122. Goyer, R.A. & Mehlman, M.A. (Eds.). Hemisphere, Washington, D.C.
Franzblau, A., & Lilis, R. (1989). Acute arsenic intoxication from environmental arsenic exposure. Archives of Environmental Health: An International Journal, 44(6), 385-390.
Freundlich, H. (1906). Über die adsorption in lösungen. Engelmann, Leipzig.
Frey, M. M., Owen, D. M., Chowdhury, Z. K., Raucher, R. S., & Edwards, M. A. (1998). Cost to Utilities of a Lower MCL for Arsenic. Journal-American Water Works Association, 90(3), 89-102.
Friedman, G., (1984). Mathematical modeling of multicomponent adsorption in batch and fixed-bed reactors. Master’s Thesis. Michigan Technological University.
Gavaskar, A. R., Sass, N. N. M., Janoy, R. J., & O’Sullivan, D. (1998). Permeable Barriers for Goundwater Remediation-Design, Construction, and Monitoring, Battelle Memorial Institute, Columbus, OH.
Ghimire, K. N., Inoue, K., Yamaguchi, H., Makino, K., & Miyajima, T. (2003). Adsorptive separation of arsenate and arsenite anions from aqueous medium by using orange waste. Water Research, 37(20), 4945-4953.
Ghurye, G. L., Clifford, D. A., & Tripp, A. R. (1999). Combined arsenic and nitrate removal by ion exchange. Journal-American Water Works Association, 91(10), 85-96.
Gillham, R. W., & O'Hannesin, S. F. (1994). Enhanced degradation of halogenated aliphatics by zero‐valent iron. Ground Water, 32(6), 958-967.
Glavee, G. N., Klabunde, K. J., Sorensen, C. M., & Hadjipanayis, G. C. (1995). Chemistry of borohydride reduction of iron (II) and iron (III) ions in aqueous and nonaqueous media. Formation of nanoscale Fe, FeB, and Fe2B powders. Inorganic Chemistry, 34(1), 28-35.
Goldberg, S., & Johnston, C. T. (2001). Mechanisms of arsenic adsorption on amorphous oxides evaluated using macroscopic measurements, vibrational spectroscopy, and surface complexation modeling. Journal of Colloid and Interface Science, 234(1), 204-216.
Gong, W. (2001). A real time in situ ATR-FTIR spectroscopic study of linear phosphate adsorption on titania surfaces. International journal of mineral processing, 63(3), 147-165.
Greenwood, N. N., Earnshaw, A. (1984). Chemistry of the elements. Pergamon Press, London.
Grossl, P. R., Eick, M., Sparks, D. L., Goldberg, S., & Ainsworth, C. C. (1997). Arsenate and chromate retention mechanisms on goethite. 2. Kinetic evaluation using a pressure-jump relaxation technique. Environmental Science & Technology, 31(2), 321-326.
Gu, B., Liang, L., Dickey, M. J., Yin, X., & Dai, S. (1998). Reductive precipitation of uranium (VI) by zero-valent iron. Environmental Science & Technology, 32(21), 3366-3373.
Gu, Z., Deng, B., & Yang, J. (2007). Synthesis and evaluation of iron-containing ordered mesoporous carbon (FeOMC) for arsenic adsorption. Microporous and Mesoporous Materials, 102(1), 265-273.
Gu, Z., Fang, J., & Deng, B. (2005). Preparation and evaluation of GAC-based iron-containing adsorbents for arsenic removal. Environmental Science & Technology, 39(10), 3833-3843.
Guan, X. H., Wang, J., & Chusuei, C. C. (2008). Removal of arsenic from water using granular ferric hydroxide: macroscopic and microscopic studies. Journal of Hazardous Materials, 156(1), 178-185.
Guo, H., Li, Y., & Zhao, K. (2010). Arsenate removal from aqueous solution using synthetic siderite. Journal of Hazardous Materials, 176(1), 174-180.
Guo, X., & Chen, F. (2005). Removal of arsenic by bead cellulose loaded with iron oxyhydroxide from groundwater. Environmental Science & Technology, 39(17), 6808-6818.
Gupta, V. K., Saini, V. K., & Jain, N. (2005). Adsorption of As (III) from aqueous solutions by iron oxide-coated sand. Journal of Colloid and Interface Science, 288(1), 55-60.
Hahn, H. (1997). Gas phase synthesis of nanocrystalline materials. Nanostructured Materials, 9(1), 3-12.
Hall, K. R., Eagleton, L. C., Acrivos, A., & Vermeulen, T. (1966). Pore-and solid-diffusion kinetics in fixed-bed adsorption under constant-pattern conditions. Industrial & Engineering Chemistry Fundamentals, 5(2), 212-223.
Han, R., Wang, Y., Yu, W., Zou, W., Shi, J., & Liu, H. (2007). Biosorption of methylene blue from aqueous solution by rice husk in a fixed-bed column. Journal of Hazardous Materials, 141(3), 713-718.
Hand, D. W., Crittenden, J. C., & Thacker, W. E. (1984). Simplified models for design of fixed-bed adsorption systems. Journal of Environmental Engineering, 110(2), 440-456.
Hansen, H. K., Ribeiro, A., & Mateus, E. (2006). Biosorption of arsenic (V) with Lessonia nigrescens. Minerals Engineering, 19(5), 486-490.
Health Canada. (2006). “Guidelines for Canadian Drinking Water Quality: Guideline Technical Document”, Health Canada, Ottawa, Ontario.
Hem, J. D. (1985). Study and interpretation of the chemical characteristics of natural water. USGS Water-Supply Paper 2254. Washington, D.C., U.S. Government Printing Office.
Henning, F.A. and D.E. Konasewich. (1984). Characterization and assessment of wood preservation facilities in British Columbia. West Vancouver, BC, Canada: Environmental Protection Services, Pacific region, Environment Canada.
Hering, J. G., & Kneebone, P. E. (2002). Biogeochemical controls on arsenic occurrence and mobility in water supplies, chapter 7. In: Environmental Chemistry of Arsenic, ed. W.T. Frankenberger Jr, 155-181. New York, Marcel Dekker Inc.
Hindmarsh, J. T., McCurdy, R. F., & Savory, J. (1986). Clinical and Environmental Aspects of Arsenic Toxicity. Critical Reviews in Clinical Laboratory Sciences, 23(4), 315-347.
Ho, Y. S., & McKay, G. (2000). The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Research, 34(3), 735-742.
Hoch, L. B., Mack, E. J., Hydutsky, B. W., Hershman, J. M., Skluzacek, J. M., & Mallouk, T. E. (2008). Carbothermal synthesis of carbon-supported nanoscale zero-valent iron particles for the remediation of hexavalent chromium. Environmental science & technology, 42(7), 2600-2605.
Holm, T. R., & Curtiss, C. D. (1988). Arsenic contamination in east-central Illinois ground waters. ILENR/RE-W-88/16. Open-File Report. Champaign, Illinois: Illinois State Water Survey, Aquatic Chemistry Section.
Hounslow, A. W. (1980). Ground‐Water Geochemistry: Arsenic in Landfills. Ground Water, 18(4), 331-333.
Hristovski, K. D., Westerhoff, P. K., Möller, T., & Sylvester, P. (2009). Effect of synthesis conditions on nano-iron (hydr) oxide impregnated granulated activated carbon. Chemical Engineering Journal, 146(2), 237-243.
Hsia, T. H., Lo, S. L., Lin, C. F., & Lee, D. Y. (1994). Characterization of arsenate adsorption on hydrous iron oxide using chemical and physical methods. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 85(1), 1-7.
Huang, C. P., & Fu, P. L. K. (1984). Treatment of arsenic (V)-containing water by the activated carbon process. Journal (Water Pollution Control Federation), 56(3), 233-242,
Huang, C. P., & Vane, L. M. (1989). Enhancing As5+ removal by a Fe2+-treated activated carbon. Research Journal of the Water Pollution Control Federation, 61(9), 1596-1603.
Hundal, L. S., Singh, J., Bier, E. L., Shea, P. J., Comfort, S. D., & Powers, W. L. (1997). Removal of TNT and RDX from water and soil using iron metal. Environmental Pollution, 97(1), 55-64.
Ichinose, N. (1992). Superfine Particle Technology, Springer, Berlin, Germany.
Irgolic, K. J. (1982). Speciation of arsenic compounds in water supplies. USEPA report 600/1-82-010. pp-107.
Jain, C. K., & Ali, I. (2000). Arsenic: occurrence, toxicity and speciation techniques. Water Research, 34(17), 4304-4312.
Jang, M., Min, S. H., Kim, T. H., & Park, J. K. (2006). Removal of arsenite and arsenate using hydrous ferric oxide incorporated into naturally occurring porous diatomite. Environmental Science & Technology, 40(5), 1636-1643.
Jang, M., Chen, W., & Cannon, F. S. (2008). Preloading hydrous ferric oxide into granular activated carbon for arsenic removal. Environmental Science & Technology, 42(9), 3369-3374.
Jekel, M. R. (1994). Removal of arsenic in drinking water treatment. Advances in Environmental Science and Technology-New York, 26, 119-119.
Jia, Y., & Demopoulos, G. P. (2005). Adsorption of arsenate onto ferrihydrite from aqueous solution: influence of media (sulfate vs nitrate), added gypsum, and pH alteration. Environmental Science & Technology, 39(24), 9523-9527.
Jia, Y., Xu, L., Fang, Z., & Demopoulos, G. P. (2006). Observation of surface precipitation of arsenate on ferrihydrite. Environmental science & technology,40(10), 3248-3253.
Jia, Y., Xu, L., Wang, X., & Demopoulos, G. P. (2007). Infrared spectroscopic and X-ray diffraction characterization of the nature of adsorbed arsenate on ferrihydrite. Geochimica et Cosmochimica Acta, 71(7), 1643-1654.
Johnson, T. L., Scherer, M. M., & Tratnyek, P. G. (1996). Kinetics of halogenated organic compound degradation by iron metal. Environmental Science & Technology, 30(8), 2634-2640.
Joshi, A., & Chaudhuri, M. (1996). Removal of arsenic from ground water by iron oxide-coated sand. Journal of Environmental Engineering, 122(8), 769-771.
Kanel, S. R., Manning, B., Charlet, L., & Choi, H. (2005). Removal of arsenic (III) from groundwater by nanoscale zero-valent iron. Environmental Science & Technology, 39(5), 1291-1298.
Kanel, S. R., Greneche, J. M., & Choi, H. (2006). Arsenic (V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material. Environmental Science & Technology, 40(6), 2045-2050.
Kanivetsky, R. (2000). Arsenic in Minnesota groundwater: Hydrogeochemical modeling of the Quaternary buried artesian aquifer and cretaceous aquifer systems. Report of Investigation 55. St. Paul, Minnesota: Minnesota Geological Survey.
Kartinen, E. O., & Martin, C. J. (1995). An overview of arsenic removal processes. Desalination, 103(1), 79-88.
Kim, H. C., Lee, C. G., Park, J. A., & Kim, S. B. (2010). Arsenic removal from water using iron-impregnated granular activated carbon in the presence of bacteria. Journal of Environmental Science and Health Part A, 45(2), 177-182.
Kinniburgh, D. G., & Smedley, P. L. (2001). Arsenic contamination of groundwater in Bangladesh, vol. 2: Final report. BGS Technical Report WC/00/19. Keyworth, UK: British Geological Survey.
Koch, I., Feldmann, J., Wang, L., Andrewes, P., Reimer, K. J., & Cullen, W. R. (1999). Arsenic in the Meager Creek hot springs environment, British Columbia, Canada. Science of the total environment, 236(1), 101-117.
Korngold, E., Belayev, N., & Aronov, L. (2001). Removal of arsenic from drinking water by anion exchangers. Desalination, 141(1), 81-84.
Korte, N. E., & Fernando, Q. (1991). A review of arsenic (III) in groundwater. Critical Reviews in Environmental Science and Technology, 21(1), 1-39.
Krupa, N. E., & Cannon, F. S. (1996). GAC: pore structure versus dye adsorption. Journal-American Water Works Association, 88(6), 94-108.
Lackovic, J. A., Nikolaidis, N. P., & Dobbs, G. M. (2000). Inorganic arsenic removal by zero-valent iron. Environmental Engineering Science, 17(1), 29-39.
Lagergren, S. (1898). About the theory of so-called adsorption of soluble substances. Kungliga Svenska Vetenskapsakademiens Handlingar, 24(4), 1-39.
Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40(9), 1361-1403.
Lara, F., Cornejo, L., Yanez, J., Freer, J., & Mansilla, H. D. (2006). Solar‐light assisted removal of arsenic from natural waters: effect of iron and citrate concentrations. Journal of Chemical Technology and Biotechnology, 81(7), 1282-1287.
Lee, H., & Choi, W. (2002). Photocatalytic oxidation of arsenite in TiO2 suspension: kinetics and mechanisms. Environmental Science & Technology, 36(17), 3872-3878.
Leist, M., Casey, R. J., & Caridi, D. (2000). The management of arsenic wastes: problems and prospects. Journal of Hazardous Materials, 76(1), 125-138.
LeVan, M. D. (1996). Fundamentals of Adsorption. Kluwer Academic Publishers, Boston, USA.
Leyva‐Ramos, R., Rangel‐Mendez, J. R., Bernal‐Jacome, L. A., & Mendoza, B. (2005). Intraparticle diffusion of cadmium and zinc ions during adsorption from aqueous solution on activated carbon. Journal of Chemical Technology and Biotechnology, 80(8), 924-933.
Leupin, O. X., & Hug, S. J. (2005). Oxidation and removal of arsenic (III) from aerated groundwater by filtration through sand and zero-valent iron. Water Research, 39(9), 1729-1740.
Li, S., Yan, W., & Zhang, W. X. (2009). Solvent-free production of nanoscale zero-valent iron (nZVI) with precision milling. Green Chemistry, 11(10), 1618-1626.
Lien, H. L., & Wilkin, R. T. (2005). High-level arsenite removal from groundwater by zero-valent iron. Chemosphere, 59(3), 377-386.
Liu, Y., Majetich, S. A., Tilton, R. D., Sholl, D. S., & Lowry, G. V. (2005). TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environmental Science & Technology, 39(5), 1338-1345.
Lorenzen, L., Van Deventer, J. S. J., & Landi, W. M. (1995). Factors affecting the mechanism of the adsorption of arsenic species on activated carbon. Minerals Engineering, 8(4), 557-569.
Loukidou, M. X., Matis, K. A., Zouboulis, A. I., & Liakopoulou-Kyriakidou, M. (2003). Removal of As (V) from wastewaters by chemically modified fungal biomass. Water Research, 37(18), 4544-4552.
Maity, S., Chakravarty, S., Bhattacharjee, S., & Roy, B. C. (2005). A study on arsenic adsorption on polymetallic sea nodule in aqueous medium. Water Research, 39(12), 2579-2590.
Majewski, P., & Thierry, B. (2007). Functionalized magnetite nanoparticles-synthesis, properties, and bio-applications. Critical Reviews in Solid State and Materials Sciences, 32(3-4), 203-215.
Mandal, B. K., & Suzuki, K. T. (2002). Arsenic round the world: a review. Talanta, 58(1), 201-235.
Manju, G. N., Raji, C., & Anirudhan, T. S. (1998). Evaluation of coconut husk carbon for the removal of arsenic from water. Water Research, 32(10), 3062-3070.
Manning, B. A., & Goldberg, S. (1996). Modeling arsenate competitive adsorption on kaolinite, montmorillonite and illite. Clays and Clay Minerals,44(5), 609-623.
Manning, B. A., Fendorf, S. E., & Goldberg, S. (1998). Surface structures and stability of arsenic (III) on goethite: spectroscopic evidence for inner-sphere complexes. Environmental Science & Technology, 32(16), 2383-2388.
Manning, B. A., Hunt, M. L., Amrhein, C., & Yarmoff, J. A. (2002). Arsenic (III) and arsenic (V) reactions with zero-valent iron corrosion products. Environmental Science & Technology, 36(24), 5455-5461.
Mass, M. J. (1992). Human carcinogenesis by arsenic. Environmental Geochemistry and Health, 14(2), 49-54.
Matheson, L. J., & Tratnyek, P. G. (1994). Reductive dehalogenation of chlorinated methanes by iron metal. Environmental Science & Technology, 28(12), 2045-2053.
Matschullat, J. (2000). Arsenic in the geosphere-a review. Science of the Total Environment, 249(1), 297-312.
Mauricio, A. V. (2010). Multi-tiered distributions of arsenic in iron nanoparticles: Observation of dual redox functionality enabled by a core-shell structure. Chemical Communications, 46(37), 6995-6997.
Melitas, N., Wang, J., Conklin, M., O'Day, P., & Farrell, J. (2002). Understanding soluble arsenate removal kinetics by zerovalent iron media. Environmental Science & Technology, 36(9), 2074-2081.
Miteva, E., Hristova, D., Nenova, V., & Maneva, S. (2005). Arsenic as a factor affecting virus infection in tomato plants: changes in plant growth, peroxidase activity and chloroplast pigments. Scientia Horticulturae, 105(3), 343-358.
Mohan, D., & Pittman Jr, C. U. (2007). Arsenic removal from water/wastewater using adsorbents-a critical review. Journal of Hazardous Materials, 142(1), 1-53.
Morel, F., & Hering, J. G. (1993). Principles and applications of aquatic chemistry (p. 588). New York etc: Wiley.
Morton, W. (1994). Health Effects of Environmental Arsenic. In: Arsenic in the Environment. J. O. Nriagu. New York. John Wiley & sons Inc.
Mostafa, M. G., Chen, Y. H., Jean, J. S., Liu, C. C., & Lee, Y. C. (2011). Kinetics and mechanism of arsenate removal by nanosized iron oxide-coated perlite. Journal of Hazardous Materials, 187(1), 89-95.
Mulvaney, P. (2001). Metal nanoparticles: double layers, optical properties, and electrochemistry. In: Nanoscale Materials in Chemistry; Klabunde, K. J., Ed.; Wiley: NewYork, pp 121-167.
Muñiz, G., Fierro, V., Celzard, A., Furdin, G., Gonzalez-Sánchez, G., & Ballinas, M. L. (2009). Synthesis, characterization and performance in arsenic removal of iron-doped activated carbons prepared by impregnation with Fe (III) and Fe (II). Journal of Hazardous Materials, 165(1), 893-902.
Myneni, S. C., Traina, S. J., Waychunas, G. A., & Logan, T. J. (1998). Experimental and theoretical vibrational spectroscopic evaluation of arsenate coordination in aqueous solutions, solids, and at mineral-water interfaces. Geochimica et Cosmochimica Acta, 62(19), 3285-3300.
Myneni, S. C., Traina, S. J., Waychunas, G. A., & Logan, T. J. (1998a). Vibrational spectroscopy of functional group chemistry and arsenate coordination in ettringite. Geochimica et Cosmochimica Acta, 62(21), 3499-3514.
National Nanotechnology Initiative. (2009). What Is Nanotechnology? Available online: Jan 22, 2013. (http://www.nano.gov/html/facts/whatIsNano.html).
Newcombe, G., Hayes, R., & Drikas, M. (1993). Granular activated carbon: importance of surface properties in the adsorption of naturally occurring organics. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 78, 65-71.
Nguyen, V. L., Chen, W. H., Young, T., & Darby, J. (2011). Effect of interferences on the breakthrough of arsenic: Rapid small-scale column tests. Water Research, 45(14), 4069-4080.
NHMRC Australian Drinking Water Guidelines. (1996). National Health and Medical Council, Agriculture and Resource Management Council of Australia and New Zealand, Commonwealth of Australia. PF S93.
Nordstrom, D.K. (2002). Worldwide occurrence of arsenic in ground water, Science, 296, 2143-2145.
Noubactep, C. (2008). A critical review on the process of contaminant removal in Fe0-H2O systems. Environmental Technology, 29(8), 909-920.
Nowack, B., & Stone, A. T. (2002). Homogeneous and heterogeneous oxidation of nitrilotrismethylene phosphonic acid (NTMP) in the presence of manganese (II, III) and molecular oxygen. The Journal of Physical Chemistry B, 106(24), 6227-6233.
NSF International. (2001a). Environmental Technology Verification Report: Removal of Arsenic in Drinking Water-Hydranautics ESPA2-4040 Reverse Osmosis Membrane Element Module, NSF 0120EPADW395.
NSF International. (2001b). Environmental Technology Verification Report: Removal of Arsenic in Drinking Water-KOCH Membrane Systems TFC-ULP4 Reverse Osmosis Membrane Module, NSF 0125EPADW395.
Nurmi, J. T., Tratnyek, P. G., Sarathy, V., Baer, D. R., Amonette, J. E., Pecher, K., & Driessen, M. D. (2005). Characterization and properties of metallic iron nanoparticles: spectroscopy, electrochemistry, and kinetics. Environmental Science & Technology, 39(5), 1221-1230.
Oke, I. A., Olarinoye, N. O., & Adewusi, S. R. A. (2008). Adsorption kinetics for arsenic removal from aqueous solutions by untreated powdered eggshell. Adsorption, 14(1), 73-83.
Oliveira, L. C., Rios, R. V., Fabris, J. D., Garg, V., Sapag, K., & Lago, R. M. (2002). Activated carbon/iron oxide magnetic composites for the adsorption of contaminants in water. Carbon, 40(12), 2177-2183.
Onishi, H. (1969). Arsenic. In: K.H. Wedepohl (Ed.), Handbook of Geochem¬istry, Vol. II, (Chapter 33), Springer-Verlag, New York.
O'reilly, S. E., Strawn, D. G., & Sparks, D. L. (2001). Residence time effects on arsenate adsorption/desorption mechanisms on goethite. Soil Science Society of America Journal, 65(1), 67-77.
OSMONICS. (2002). Virden, Manitoba, Canada case study: arsenic. OSMONICS profiles of winning solutions, Minnetonka, MN, Canada.

Paige, C. R., Snodgrass, W. J., Nicholson, R. V., & Scharer, J. M. (1996). The crystallization of arsenate-contaminated iron hydroxide solids at high pH. Water Environment Research, 981-987.
Pakula, M., Biniak, S., & Swiatkowski, A. (1998). Chemical and electrochemical studies of interactions between iron (III) ions and an activated carbon surface. Langmuir, 14(11), 3082-3089.
Pal, B. N. (2001). In: Technologies for Arsenic Removal from Drinking Water; Bangladesh University of Engineering and Technology, Dhaka, The United Nations University, Tokyo: Tokyo, pp 59-68.
Parette, R., & Cannon, F. S. (2005). The removal of perchlorate from groundwater by activated carbon tailored with cationic surfactants. Water Research, 39(16), 4020-4028.
Payne, K. B., & Abdel-Fattah, T. M. (2005). Adsorption of arsenate and arsenite by iron-treated activated carbon and zeolites: effects of pH, temperature, and ionic strength. Journal of Environmental Science and Health, 40(4), 723-749.
Pena, M., Meng, X., Korfiatis, G. P., & Jing, C. (2006). Adsorption mechanism of arsenic on nanocrystalline titanium dioxide. Environmental science & technology, 40(4), 1257-1262.
Peryea, F. J., & Creger, T. L. (1994). Vertical distribution of lead and arsenic in soils contaminated with lead arsenate pesticide residues. Water, Air, and Soil Pollution, 78(3-4), 297-306.
Pierce, M. L., & Moore, C. B. (1982). Adsorption of arsenite and arsenate on amorphous iron hydroxide. Water Research, 16(7), 1247-1253.


Ponder, S. M., Darab, J. G., & Mallouk, T. E. (2000). Remediation of Cr (VI) and Pb (II) aqueous solutions using supported, nanoscale zero-valent iron. Environmental Science & Technology, 34(12), 2564-2569.
Pontius, F. W. (1999). Complying with future water regulations. Journal-American Water Works Association, 91(3), 46-58.
Prasad, G. (1994). Removal of arsenic (V) from aqueous systems by adsorption onto some geological materials. Advances in Environmental Science and Technology-New York, 26, 133-133.
Rajaković, L. V. (1992). The sorption of arsenic onto activated carbon impregnated with metallic silver and copper. Separation Science and Technology, 27(11), 1423-1433.
Randall, S. R., Sherman, D. M., & Ragnarsdottir, K. V. (2001). Sorption of As (V) on green rust (Fe4 (II) Fe2 (III)(OH) 12SO4· 3H2O) and lepidocrocite (γ-FeOOH): Surface complexes from EXAFS spectroscopy. Geochimica et Cosmochimica Acta, 65(7), 1015-1023.
Raven, K. P., Jain, A., & Loeppert, R. H. (1998). Arsenite and arsenate adsorption on ferrihydrite: kinetics, equilibrium, and adsorption envelopes. Environmental Science & Technology, 32(3), 344-349.
Reed, B. E., Vaughan, R., & Jiang, L. (2000). As (III), As (V), Hg, and Pb removal by Fe-oxide impregnated activated carbon. Journal of Environmental Engineering, 126(9), 869-873.
Reinsch, B. C., Forsberg, B., Penn, R. L., Kim, C. S., & Lowry, G. V. (2010). Chemical transformations during aging of zero-valent iron nanoparticles in the presence of common groundwater dissolved constituents. Environmental science & technology, 44(9), 3455-3461.
Roddick-Lanzilotta, A. J., McQuillan, A. J., & Craw, D. (2002). Infrared spectroscopic characterisation of arsenate (V) ion adsorption from mine waters, Macraes mine, New Zealand. Applied Geochemistry, 17(4), 445-454.
Ryker, S. J. (2003). Arsenic in ground water used for drinking water in the United States. In Arsenic in Ground Water (pp. 165-178). Springer US.
Sacre, J. A. (1997). Treatment walls: a status update. Ground water remediation technologies analysis center, TP-97-02, Pittsburgh, PA.
Saha, J. C., Dikshit, A. K., Bandyopadhyay, M., & Saha, K. C. (1999). A review of arsenic poisoning and its effects on human health. Critical Reviews in Environmental Science and Technology, 29(3), 281-313.
Sasaki, K., Nakano, H., Wilopo, W., Miura, Y., & Hirajima, T. (2009). Sorption and speciation of arsenic by zero-valent iron. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 347(1), 8-17.
Scherer, M. M., Richter, S., Valentine, R. L., & Alvarez, P. J. (2000). Chemistry and microbiology of permeable reactive barriers for in situ groundwater clean up.Critical Reviews in Microbiology, 26(4), 221-264.
Schroeder, E. D. (1977). Water and Wastewater Treatment. McGraw-Hill, NY, USA.
Selecky, M., Bill, W., & Gregg, G. (2003). Guidance Document: Arsenic Treatment for Small Water Systems. DOH Pub. # 331-210, Washington State Department of Health, Olympia, Wasington.


Sherman, D. M., & Randall, S. R. (2003). Surface complexation of arsenic (V) to iron (III)(hydr) oxides: structural mechanism from ab initio molecular geometries and EXAFS spectroscopy. Geochimica et Cosmochimica Acta, 67(22), 4223-4230.
Slejko, F. L. (1985). Adsorption technology. A step-by-step approach to process evaluation and application. New York; Basel: Dekker.
Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17(5), 517-568.
Snoeyink, V. L., & Summers, R. S. (1999). Adsorption of organic compounds. AWWA Water Quality and Treatment-A Handbook of Community Water Supplies, 5th edition, McGraw Hill, New York.
Sontheimer, H., Crittenden, J. C. & Summers, R. S. (1988). Activated Carbon for Water Treatment, DVGW Forschungsstelle, Engler-Bunte-Institut, Universitat Karlsruhe (TH), Germany.
Sparks, D. L. (2003). Environmental Soil Chemistry. Access Online via Elsevier.
Stumm, W. (1992). Chemistry of the Solid-water Interface: Processes at the Mineral-water and Particle-water Interface in Natural Systems. John Wiley & Son Inc.
Sturgeon, R. E., Siu, K. M., Willie, S. N., & Berman, S. S. (1989). Quantification of arsenic species in a river water reference material for trace metals by graphite furnace atomic absorption spectrometric techniques. Analyst, 114(11), 1393-1396.
Su, C., & Puls, R. W. (2001). Arsenate and arsenite removal by zero-valent iron: kinetics, redox transformation, and implications for in situ groundwater remediation. Environmental Science & Technology, 35(7), 1487-1492.

Subramanian, K. S., Viraraghavan, T., Phommavong, T., & Tanjore, S. (1997). Manganese Greensand for Removal of Arsenic in Drinking Water. Water Quality Research Journal Canada, 32(3), 551-561.
Sullivan, K. A., & Aller, R. C. (1996). Diagenetic cycling of arsenic in Amazon shelf sediments. Geochimica et Cosmochimica Acta, 60(9), 1465-1477.
Summers, R. S., Hooper, S. M., Solarik, G., Owen, D. M., & Seongho, H. (1995). Bench-scale evaluation of GAC for NOM control. Journal-American Water Works Association, 87(8), 69-80.
Sun, X., & Doner, H. E. (1998). Adsorption and oxidation of arsenite on goethite. Soil Science, 163(4), 278-287.
Suslick, K. S., Choe, S. B., Cichowlas, A. A., & Grinstaff, M. W. (1991). Sonochemical synthesis of amorphous iron. Nature, 353(6343), 414-416.
Swedlund, P. J., & Webster, J. G. (1999). Adsorption and polymerisation of silicic acid on ferrihydrite, and its effect on arsenic adsorption. Water Research, 33(16), 3413-3422.
Thirunavukkarasu, O. S., Viraraghavan, T., & Subramanian, K. S. (2003). Arsenic removal from drinking water using iron oxide-coated sand. Water, Air, and Soil Pollution, 142(1-4), 95-111.
Thronton, R.C. and Fargo, M. (1997). The Geochemistry of Arsenic, Arsenic: Exposure and Health Effects. C.O. Abernathy, R.L. Calderon and W.R Chappell (Eds.) Chapman and Hall, New York.
US EPA. (1987). Volatile SOCs, Final rule, Fed. reg., 2:130:25690.
US EPA. (1992). Test Methods for Evaluating Solid Waste, Physical/Chemical Methods. Method 1311, SW-846, 3rd edition, Washington, DC.
US EPA. (2000). Arsenic Removal from Drinking Water by Ion Exchange and Activated Alumina Plants, Prepared by Battelle under contract 68-C7-0008 for EPA ORD.
US EPA. (2001a). National primary drinking water regulations: Arsenic and clarifications to compliance and new source contaminants monitoring, Federal Register, 66(14), 6975-7066.
US EPA. (2001b). Arsenic rule benefit analysis: An SAB review. [EPA-SAB-EC-01-008], Washington, DC.
US EPA. (2003). Arsenic treatment technology evaluation handbook for small systems, office of water (4606M), EPA 816-R-03-014.
Vahter, M. (2000). Genetic polymorphism in the biotransformation of inorganic arsenic and its role in toxicity. Toxicology Letters, 112, 209-217.
Valberg, P. A., Beck, B. D., Bowers, T. S., Keating, J. L., Bergstrom, P. D., & Boardman, P. D. (1997). Issues in setting health-based cleanup levels for arsenic in soil. Regulatory Toxicology and Pharmacology, 26(2), 219-229.
Vaughan, R. L., & Reed, B. E. (2005). Modeling As(V) removal by a iron oxide impregnated activated carbon using the surface complexation approach. Water Research, 39(6), 1005-1014.
Villa-Lojo, M. C., Beceiro-Gonzalez, E., Alonso-Rodriguez, E., & Prada-Rodriguez, D. (1997). Arsenic speciation in marine sediments: effects of redox potential and reducing conditions. International Journal of Environmental Analytical Chemistry, 68(3), 377-389.
Villars, Pierre. Pearson's handbook: crystallographic data for intermetallic phases. ASM international, 1997.
Viraraghavan, T., Subramanian, K. S., & Aruldoss, J. A. (1999). Arsenic in drinking water-problems and solutions. Water Science and Technology, 40(2), 69-76.
Vitela-Rodriguez, A. V., & Rangel-Mendez, J. R. (2013). Arsenic removal by modified activated carbons with iron hydro (oxide) nanoparticles. Journal of Environmental Management, 114, 225-231.
Wakao, N., & Funazkri, T. (1978). Effect of fluid dispersion coefficients on particle-to-fluid mass transfer coefficients in packed beds: correlation of Sherwood numbers. Chemical Engineering Science, 33(10), 1375-1384.
Wang, C. B., & Zhang, W. X. (1997). Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environmental Science & Technology, 31(7), 2154-2156.
Welch, A. H., Lico, M. S., & Hughes, J. L. (1988). Arsenic in ground water of the western United States. Ground Water, 26(3), 333-347.
Welch, A. H., & Stollenwerk, K. G. (Eds.). (2003). Arsenic in ground water (p. 475). Dordrecht: Kluwer Academic Publishers.
Westall, J. C. (1986). Reactions at the oxide-solution interface: Chemical and electrostatic models. Geochemical Processes at Mineral Surfaces, 323, 54-78.
Westerhoff, P., Highfield, D., Badruzzaman, M., & Yoon, Y. (2005). Rapid small-scale column tests for arsenate removal in iron oxide packed bed columns. Journal of Environmental Engineering, 131(2), 262-271.
WHO. (1993). Arsenic in drinking water, Fact Sheet No 210. Internet. Jan. 22, 2013. Available: https://apps.who.int/inf-fs/en/fact210.html.
WHO. (1996). Guidelines for drinking water quality. 2nd edition, Geneva
WHO. (1997). Guidelines for drinking water during coagulation, Journal of Environmental Engineering, 123:800-807.
Wilkie, J. A., & Hering, J. G. (1996). Adsorption of arsenic onto hydrous ferric oxide: effects of adsorbate/adsorbent ratios and co-occurring solutes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 107, 97-110.
Wilkin, R. T., Su, C., Ford, R. G., & Paul, C. J. (2005). Chromium-removal processes during groundwater remediation by a zerovalent iron permeable reactive barrier. Environmental Science & Technology, 39(12), 4599-4605.
Wong, H. K. T., Gauthier, A., Beauchamp, S., & Tordon, R. (2002). Impact of toxic metals and metalloids from the Caribou gold-mining areas in Nova Scotia, Canada. Geochemistry: Exploration, Environment, Analysis, 2(3), 235-241.
www.micromeritics.com, visited October 15, 2014.
Yan, X. P., Kerrich, R., & Hendry, M. J. (2000). Distribution of arsenic (III), arsenic (V) and total inorganic arsenic in porewaters from a thick till and clay-rich aquitard sequence, Saskatchewan, Canada. Geochimica et Cosmochimica Acta, 64(15), 2637-2648.
Yang, L., Wu, S., & Chen, J. P. (2007). Modification of activated carbon by polyaniline for enhanced adsorption of aqueous arsenate. Industrial & Engineering Chemistry Research, 46(7), 2133-2140.
Yates, D. E., Levine, S., & Healy, T. W. (1974). Site-binding model of the electrical double layer at the oxide/water interface. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 70, 1807-1818.
Yates, D. E. (1975). The Structure of the Oxide/Aqueous Electrolyte Interface (Doctoral dissertation, University of Melbourne, Department of Physical Chemistry).
Yong, R. N., & Mulligan, C. N. (2003). Natural Attenuation of Contaminants in Soils. CRC Press, Boca Raton, Florida, USA.
Zhang, Q. L., Lin, Y. C., Chen, X., & Gao, N. Y. (2007). A method for preparing ferric activated carbon composites adsorbents to remove arsenic from drinking water. Journal of Hazardous Materials, 148(3), 671-678.
Zhang, Q., Pan, B., Zhang, W., Pan, B., Zhang, Q., & Ren, H. (2008). Arsenate removal from aqueous media by nanosized hydrated ferric oxide (HFO)-loaded polymeric sorbents: effect of HFO loadings. Industrial & Engineering Chemistry Research, 47(11), 3957-3962.
Zheng, J., H. Holger, D. Brian and D.M. Stephen. (2003). Speciation of arsenic in water, sediment, and plants of the Moira watershed, Canada, using HPLC coupled to high resolution ICP-MS. Analytical and Bioanalytical Chemistry, 377, 14-24.
Zhu, H., Jia, Y., Wu, X., & Wang, H. (2009). Removal of arsenic from water by supported nano zero-valent iron on activated carbon. Journal of Hazardous Materials, 172(2), 1591-1596.
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top