Login | Register

Nitrogen Removal by the Combined Partial Nitrification and Anammox Processes in the BioCAST Technology.

Title:

Nitrogen Removal by the Combined Partial Nitrification and Anammox Processes in the BioCAST Technology.

Mohammadhosseinpour, Bahareh (2016) Nitrogen Removal by the Combined Partial Nitrification and Anammox Processes in the BioCAST Technology. Masters thesis, Concordia University.

[thumbnail of Mohammadhosseinpour_MASc_S2016.pdf]
Preview
Text (application/pdf)
Mohammadhosseinpour_MASc_S2016.pdf - Accepted Version
3MB

Abstract

Nitrogen removal from synthetic wastewater through combined partial nitrification (PN) and anammox processes in a new integrated multi-environment wastewater treatment technology called BioCAST was investigated. Based on the design and operation strategy of BioCAST technology, it was assumed that this technology was suitable for nitrogen removal by the combined nitrification and anammox processes. This is due to the fact that the BioCAST technology contains several zones with different environmental conditions that are required for the growth and activity of both ammonium oxidizing bacteria (AOB) and anammox bacteria. Moreover, the three zones are in physical contact with each other, implying that the byproduct of nitrification; i.e. nitrite will be readily converted by the anammox bacteria to nitrogen gas via the anammox process. The system operated with ammonium concentration in the range of 10 to 350 mg/l for 120 days at hydraulic retention times of 2 and 4 days. The nitrogen loading rates (NLR) during the reported operation period changed in the range of 0.0021 to 0.17 kg/m3.d. The most favorable dissolved oxygen (DO) concentration inside the aerobic, microaerophilic and anoxic zones of the first BioCAST bioreactor was found to be in the range of 0.9-1.2 mg/l, 0.1-0.4 mg/l and 0.0 mg/l, respectively. The most favorable pH during partial nitrification and anammox processes was found to be in the range of 7.5-8.1 in aerobic and microaerophilic zones and 7.8-8.1 in the anoxic zone of the bioreactor. The BioCAST technology demonstrated ammonia-nitrogen as well as total nitrogen (TN) removal efficiencies up to 85.6% and 81.2%, respectively, through PN and the anammox processes. Furthermore, scanning electron microscopy (SEM) revealed the presence of irregular cauliflower structure of anammox bacteria inside the BioCAST bioreactor. In conclusion, the BioCAST technology with unique characteristics for combined partial nitrification (PN) and anammox processes is suitable for the removal of nitrogen from a synthetic wastewater without the need for organic carbon.

Divisions:Concordia University > Gina Cody School of Engineering and Computer Science > Building, Civil and Environmental Engineering
Item Type:Thesis (Masters)
Authors:Mohammadhosseinpour, Bahareh
Institution:Concordia University
Degree Name:M.A. Sc.
Program:Civil Engineering
Date:20 April 2016
Thesis Supervisor(s):Mulligan, Catherine
Keywords:Nitrogen removal- Anammox Process- BioCAST technology- Partial nitrification
ID Code:981144
Deposited By: BAHAREH MOHAMMADHOSSEINPOUR
Deposited On:15 Jun 2016 14:21
Last Modified:18 Jan 2018 17:52

References:

Alimahmoodi, M., Yerushalmi, L., & Mulligan, C. N. (2012). Development of biofilm on geotextile in a new multi-zone wastewater treatment system for simultaneous removal of COD, nitrogen and phosphorus. Bioresource Technology, 107, 78-86.
Anthonisen, A. C., Loehr, R. C., Prakasam, T. B. S., & Srinath, E. G. (1976). Inhibition of nitrification by ammonia and nitrous acid. Water Pollution Control Federation, 48(5) 835-852.
Araujo, J. C., Campos, A. C., Correa, M. M., Silva, E. C., Matté, M. H., Matté, G. R.,Von Sperling, M., & Chernicharo, C. A. L. (2011). Anammox bacteria enrichment and characterization from municipal activated sludge. Water Science and Technology, 64(7), 1428-1434.
Arrojo, B., Mosquera-Corral, A., Campos, J. L., & Méndez, R. (2006). Effects of mechanical stress on anammox granules in a sequencing batch reactor (SBR). Journal of Biotechnology, 123(4), 453-463.
Aslan, S., Miller, L., & Dahab, M. (2009). Ammonium oxidation via nitrite accumulation under limited oxygen concentration in sequencing batch reactors. Bioresource Technology, 100(2), 659-664.
ATSDR. (2006). Agency for toxic substances and disease registry: Toxic substances portal. Retrieved from http://www.eoearth.org/view/article/51cbf2b17896bb431f6aa61b/#sthash.ldU97Jks.dpuf
Barnes, D., & Bliss, P. J. (1983). Biological control of nitrogen in wastewater treatment. London; New York: E. & F.N. Spon.
Behzadian, F. (2010). Evaluation of hydrodynamic characteristics of an integrated multi-environment wastewater treatment system (M.A.Sc.thesis). Concordia University, Montreal, Canada.
Bernet, N., Dangcong, P., Delgenès, J., & Moletta, R. (2001). Nitrification at low oxygen concentration in biofilm reactor. Journal of Environmental Engineering, 127(3), 266-271.
Bettazzi, E., Caffaz, S., Vannini, C., & Lubello, C. (2010). Nitrite inhibition and intermediates effects on anammox bacteria: A batch-scale experimental study. Process Biochemistry, 45(4), 573-580.
Blackburne, R., Yuan, Z., & Keller, J. (2008). Demonstration of nitrogen removal via nitrite in a sequencing batch reactor treating domestic wastewater. Water Research, 42(8), 2166-2176.
Broda, E. (1977). Two kinds of lihotrophs missing in nature. Zeitschrift Für Allg. Microbiologie ,17(6) 491-493.
Canada, Hydromantis Inc, & AXOR Experts-Conseils Inc. (2003). NH3 treatment processes for the removal of ammonia from municipal wastewater. Ottawa: Environment Canada.
Chen, H., Liu, S., Yang, F., Xue, Y., & Wang, T. (2009). The development of simultaneous partial nitrification, ANAMMOX and denitrification (SNAD) process in a single reactor for nitrogen removal. Bioresource Technology, 100(4), 1548-1554.
Cho, S., Takahashi, Y., Fujii, N., Yamada, Y., Satoh, H., & Okabe, S. (2010). Nitrogen removal performance and microbial community analysis of an anaerobic up-flow granular bed anammox reactor. Chemosphere, 78(9), 1129-1135.
Dalsgaard, T., Thamdrup, B., & Canfield, D. (2005). Anaerobic ammonium oxidation (anammox) in the marine environment. Research in Microbiology, 156(4), 457-464.
Dapena-Mora, A., Fernández, I., Campos, J. L., Mosquera-Corral, A., Méndez, R., & Jetten, M. S. M. (2007). Evaluation of activity and inhibition effects on anammox process by batch tests based on the nitrogen gas production. Enzyme and Microbial Technology, 40(4), 859-865.
Den Camp, H., Kartal, B., Guven, D., van Niftrik, L., Haaijer, S., van der Star, W., Jetten, M. (2006). Global impact and application of the anaerobic ammonium-oxidizing (anammox) bacteria. Biochemical Society Transactions, 34(1), 174-178.
Department of Health and Human Services, Public Health Service. (2004). Public health statement. ATSDR.
Dongen,L., Jetten, M., & van Loosdrecht, M.C.M. (2001). The combined sharon/anammox process. London: IWA.
Downing, L., & Nere, R. (1964). Nitrification in the activated sludge process. J. Proc. Inst. Sewage Purification, 63, 130-153.
Egli, K., Fanger, U., Alvarez, P. J. J., Siegrist, H., Van der Meer, J. R., & Zehnder, A. J. B. (2001). Enrichment and characterization of an anammox bacterium from a rotating biological contactor treating ammonium-rich leachate. Archives of Microbiology, 175(3), 198-207.
Figueroa, M., del Río, A. V., Campos, J. L., Mosquera-Corral, A., & Méndez, R. (2011). Treatment of high loaded swine slurry in an aerobic granular reactor. Water Science & Technology, 63(9), 1808-1814.
Grunditz, C., & Dalhammar, G. (2001). Development of nitrification inhibition assays using pure cultures of nitrosomonas and nitrobacter. Water Research, 35(2), 433-440.
Guo, J., Peng, Y., Wang, S., Zheng, Y., Huang, H., & Wang, Z. (2009). Long-term effect of dissolved oxygen on partial nitrification performance and microbial community structure. Bioresource Technology, 100(11), 2796-2802.
Hanaki, K., Wantawin, C., & Ohgaki, S. (1990). Nitrification at low level of DO with and without organic loading in a suspended growth reactor. Water Res, 24(3), 297-302.
Hellinga, C., van Loosdrecht, M. C. M., & Heijnen, J. J. (1999). Model based design of a novel process for nitrogen removal from concentrated flows. Mathematical & Computer Modelling of Dynamical Systems, 5(4), 351-371.
Hendrik, D., & Strous, M. (2002). Process for the treatment of wastewater containing ammonia (Patent No: 6,485,646 B1 ed.). USA: United States of America.
Hippen, A., Rosenwinkel, KH., Baumgarten, G., & Seyfried, C.F. (1997). Aerobic deammonification: a new experience in the treatment of waste waters.Water Science & Technology, 35(11), 111-120.
Horan, N. J. (1990). Biological wastewater treatment systems: Theory and operation. Chichester; New York: Wiley.
Jetten, M. S. M., van Niftrik, L., Strous, M., Kartal, B., Keltjens, J. T., & Op den Camp, H. J. M. (2009). Biochemistry and molecular biology of anammox bacteria. Critical Reviews in Biochemistry & Molecular Biology, 44(2-3), 65-84.
Jetten, M. S., Strous, M., van de Pas-Schoonen, Katinka T, Schalk, J., van Dongen, U. G. J. M., van de Graaf, A. A., & Logemann, S. (1998). The anaerobic oxidation of ammonium. FEMS Microbiology Reviews, 421-437.
Kartal, B., van Niftrik, L., Rattray, J., de Vossenberg, J., Schmid, M., Damste, J., Strous, M. (2008). Candidatus 'brocadia fulgida': An autofluorescent anaerobic ammonium oxidizing bacterium. FEMS Microbiology Ecology, 63(1), 46-55.
Kartal, B., Rattray, J., van Niftrik, L. A., van de Vossenberg, J., Schmid, M. C., Webb, R. I., Strous, M. (2007). Candidatus “Anammoxoglobus propionicus” a new propionate oxidizing species of anaerobic ammonium oxidizing bacteria. Systematic and Applied Microbiology, 30(1), 39-49.
Khin, T., & Annachhatre, A. (2004). Novel microbial nitrogen removal processes. Biotechnol Adv, 22(7), 519-532.
Kimura, Y., Isaka, K., Kazama, F., & Sumino, T. (2010). Effects of nitrite inhibition on anaerobic ammonium oxidation. Applied Microbiology & Biotechnology, 86(1), 359-365.

Kuai, L., & Verstraete, W. (1998). Ammonium removal by the oxygen-limited autotrophic nitrification–denitrification system. Applied and Environmental Microbioogyl, 64(11) 4500-4506.
Kuenen, J., & Jetten, M. (2001). Extraordinary anaerobic ammonium-oxidizing bacteria. Asm News, 67(9), 456-463.
Kuypers, M. , Sliekers, A. O., Lavik, G., Schmid, M., Jorgensen, B. B., Kuenen, J. G., Jetten, M. S. M. (2003). Anaerobic ammonium oxidation by anammox bacteria in the black sea. Nature, 422(6932), 608-611.
Li, A., Sun, G., & Xu, M. (2008). Recent patents on anammox process. Bentham Science Publishers, 2(3) 189-194.
Lotti, T., van der Star, W. R. L., Kleerebezem, R., Lubello, C., & van Loosdrecht, M. C. M. (2012). The effect of nitrite inhibition on the anammox process. Water Research, 46(8), 2559-2569.
Martinez, A.G., Osorio, F., Sanchez, A.R., Toledo, M.V.M., Lopez, J.G., Lotti, T., van Loosdretch , M.C.M. (1995). Bacterial community structure of a lab-scale of anammox membrane bioreactor. American Institute of Chemical Engineers, 31(1), 186-193.
Mulder, A., van de Graaf, A. A., Robertson, L. A., & Kuenen, J. G. (1995). Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiology Ecology, 16(3), 177-184.
Mulligan, C. N. (2002). Environmental biotreatment: Technologies for air, water, soil, and waste. Rockville, MD: Government Institutes.
National academy of sciences,. (1969). Eutrophication : Causes, consequences, correctives; proceedings of a symposium. Washington: National Academy of Sciences.
Ni, SQ., Lee, PH., Fessehaie, A., Gao, BY., & S Sung. (2010). Enrichment and biofilm formation of Anammox bacteria in a non-woven membrane reactor. Bioresource Technology, 101(6), 1792-1799.
Oram, B. (1999). Water research center. Retrieved from http://www.water-research.net/.
Ozturk, I., Altinbas, M., Koyuncu, I., Arikan, O., & Gomec-Yangin, C. (2003). Advanced physico-chemical treatment experiences on young municipal landfill leachates. Waste Management, 23(5), 441-446.
Peng, Y., & Zhu, G. (2006). Biological nitrogen removal with nitrification and denitrification via nitrite pathway. Applied Microbiology & Biotechnology, 73(1), 15-26.
Penton, C., Devol, A., & Tiedje, J. (2006). Molecular evidence for the broad distribution of anaerobic ammonium-oxidizing bacteria in freshwater and marine sediments. Applied and Environmental Microbiology, 72(10), 6829-6832.
Puyol, D., Carvajal-Arroyo, J., Li, G., Dougless, A., Fuentes-Velasco, M., Sierra-Alvarez, R., & Field, J. (2014). High pH (and not free ammonia) is responsible for anammox inhibition in mildly alkaline solutions with excess of ammonium. Biotechnology Letters, 36(10), 1981-1986.
Qin, Y., Zhou, S. (2009). Enrichment and molecular diversity of anammox bacteria in uasb reactor. Environment Protection Engineering 35(3), 17-26.
Quan, Z.X., Rhee, S.K., Zuo, J.E., Yang ,Y., Bae, J.W., Park, J.R., Park, Y.H. (2008). Diversity of ammonium-oxidizing bacteria in a granular sludge anaerobic ammonium-oxidizing (anammox) reactor. Environmental Microbiology, 10(11), 3130-3139.
Ramalho, R. S. (1983). Introduction to wastewater treatment processes ( second edition). New York: Academic Press; 2 edition (December 12, 1983).
Randall, H., & Thompson, T. (1941). Dissolved nitrogen in the sea water of the northeast specific with notes on the total carbon dioxide. Journal of Marine Research, 11-27.
Reynolds, T.D., & Richards, P.A. (1996). Unit operations and processes in environmental engineering (2nd ed.). Boston: PWS Pub. Co.
Richard, A. F. (1965). Chemical observations in some anoxic sulfide-bearing basins and fjords. Pergamon Press, 215-243.
Rittmann, B. E., & McCarty, P. L. (2001). Environmental biotechnology: Principles and applications. Boston: McGraw-Hill.
Schmid, M. C., Risgaard-Petersen, N., van de Vossenberg, J., Kuypers, M. M. M., Lavik, G., Petersen, J., Jetten, M. S. M. (2007). Anaerobic ammonium-oxidizing bacteria in marine environments: Widespread occurrence but low diversity. Environmental Microbiology, 9(6), 1476-1484.
Schmid, M., Twachtmann, U., Klein, M., Strous, M., Juretschko, S., Jetten, M., Wagner, M. (2000). Molecular evidence for genus level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation. Systematic and Applied Microbiology, 23(1), 93-106.
Schmid, M., Walsh, K., Webb, R., Rijpstra, W. I., van de Pas-Schoonen, K., Verbruggen, M. J., Strous, M. (2003). Candidatus “Scalindua brodae”, sp. nov., candidatus “Scalindua wagneri”, sp. nov., two new species of anaerobic ammonium oxidizing bacteria. Systematic and Applied Microbiology, 26(4), 529-538.
Schulthess, V., Wild, D., & Gujer, W. (1994). Nitric and nitrous oxide from denitrifying activated sludge at low oxygen concentration. Water Science & Technology, 30(6), 123-132.
Siegrist, H., Reithaar, S., Koch, G., Lais, P. (1998) Nitrogen loss in a nitrifying rotating contactor treating ammonium-rich wastewater without organic carbon. Water Science & Technology, 38(8-9), 241-248.
Strous M, Kuenen JG, & Jetten MS. (1999). Key physiology of anaerobic ammonium oxidation. Applied and Environmental Microbiology, 65(7), 3248-3250.
Strous, M. (2000). Microbiology of anaerobic ammonium oxidation (PhD). Available from Delft University.
Strous, M., Heijnen, J. J., Kuenen, J. G., & Jetten, M. S. M. (1998). The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms. Applied Microbiology and Biotechnology, 50(5), 589-596.
Strous, M., Van Gerven, E., Kuenen, J. G., & Jetten, M. (1997). Effects of aerobic and microaerobic conditions on anaerobic ammonium- oxidizing (anammox) sludge. Applied and Environmental Microbiology, 63(6), 2446-2448.
Sundermeyer, H., & Bock, E. (1981). Energy metabolism of autotrophically and heterotrophically grown cells of nitrobacter winogradskyi. Archives of Microbiology, 130(3), 250-254.
Tchobanoglous, G., Burton, F. L., Stensel, H. D., & Metcalf & Eddy. (2003). Wastewater engineering: Treatment and reuse (4th ed.). Dubuque, IA: McGraw-Hill.
Trigo, C., Campos, J. L., Garrido, J. M., & Méndez, R. (2006). Start-up of the anammox process in a membrane bioreactor. Journal of Biotechnology, 126(4), 475-487.
UNEPA. (1986). World health organization. United Nations Environment Programme.
Van de Graaf, A. A., De Bruijn, P., Robertson, L. A., Jetten, M. S. M., & Kuenen, J. G. (1996). Autotrophic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor. Microbiology, 142(8), 2187-2196.
Van de Graaf, A. A., De Bruijn, P., Robertson, L. A., Jetten, M. S. M., & Kuenen, J. G. (1997). Metabolic pathway of anaerobic ammonium oxidation on the basis of 15N studies in a fluidized bed reactor. Microbiology, 143(7), 2415-2421.
Van der Star, WRL., Abma, WR., Blommers, D., Mulder, JW., Tokutomi,T., Strous, M., Picioreanu, C., & van Loosdrecht, M.C.M. (2007). Startup of reactors for anoxic ammonium oxidation: Experiences from the first full-scale anammox reactor in Rotterdam. Water Research, 41(18), 4149-4163.
Van de Vossenberg, J., Rattray, J. E., Geerts, W., Kartal, B., van Niftrik, L., van Donselaar, E. G., Jetten, M. S. M. (2008). Enrichment and characterization of marine anammox bacteria associated with global nitrogen gas production. Environmental Microbiology, 10(11), 3120-3129.
Van Dongen, U., Jetten, M., & van Loosdrecht, M. (2001). The SHARON((R))-anammox((R)) process for treatment of ammonium rich wastewater. Water Science and Technology, 44(1), 153-160.
Van Hulle, S., Vandeweyer, H., Meesschaert, B., Vanrolleghem, P., Dejans, P., & Dumoulin, A. (2010). Engineering aspects and practical application of autotrophic nitrogen removal from nitrogen rich streams. Chemical Engineering Journal, 162(1), 1-20.
University of South Florida (Producer), & Van Loosdretch, M. (Director). (2014). Lecture on anammox technology: Science, discovery and commercialization. [Video/DVD]
Van Niftrik, L., Fuerst, J., Damste, J., Kuenen, J., Jetten, M., & Strous, M. (2004). The anammoxosome: An intracytoplasmic compartment in anammox bacteria. FEMS Microbiology Letters, 233(1), 7-13.
Viessman, W. (2009). Water supply and pollution control (8th ed.). Upper Saddle River, NJ: Pearson Prentice Hall.
Wang, T., Zhang, H., Gao, D., Yang, F., Yang, S., Jiang, T., & Zhang, G. (2011). Enrichment of anammox bacteria in seed sludges from different wastewater treating processes and start-up of anammox process. Desalination, 271(1-3), 193-198.
Windey, K., De Bo, I., & Verstraete, W. (2005). Oxygen-limited autotrophic nitrification–denitrification (OLAND) in a rotating biological contactor treating high-salinity wastewater. Water Research, 39(18), 4512-4520.
Woebken, D., Lam, P., Kuypers, M. M. M., Naqvi, S. W. A., Kartal, B., Strous, M., Amann, R. (2008). A microdiversity study of anammox bacteria reveals a novel candidatus scalindua phylotype in marine oxygen minimum zones. Environmental Microbiology, 10(11), 3106-3119.

Wyffels, S., Boeckx, P., Van Cleemput, O., Pynaert, K., Verstraete, W., Zhang, D.,Chen, G. (2004). Nitrogen removal from sludge reject water by a two-stage oxygen-limited autotrophic nitrification denitrification process. Water Science and Technology, 49(5-6), 57-64.
Yerushalmi, L., Alimahmoodi, M., & Mulligan, C. N. (2011). Performance evaluation of the BioCAST technology: A new multi-zone wastewater treatment system. Water Science & Technology, 64(10), 1967-1972.
Zhang, L., Zheng, P., Tang, C., & Jin, R. (2008). Anaerobic ammonium oxidation for treatment of ammonium-rich wastewaters. Journal of Zhejiang University-Science B, 9(5), 416-426.
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top