Poulin-Dubois, Diane, Crivello, Cristina and Wright, Kristyn (2015) Biological Motion Primes the Animate/Inanimate Distinction in Infancy. PLOS ONE, 10 (2). e0116910. ISSN 1932-6203
Preview |
Text (application/pdf)
205kBpoulin-dubois.plosone.2015.pdf - Published Version Available under License Spectrum Terms of Access. |
Official URL: http://dx.doi.org/10.1371/journal.pone.0116910
Abstract
Given that biological motion is both detected and preferred early in life, we tested the hypothesis that biological motion might be instrumental to infants’ differentiation of animate and inanimate categories. Infants were primed with either point-light displays of realistic biological motion, random motion, or schematic biological motion of an unfamiliar shape. After being habituated to these displays, 12-month-old infants categorized animals and vehicles as well as furniture and vehicles with the sequential touching task. The findings indicated that infants primed with point-light displays of realistic biological motion showed better categorization of animates than those exposed to random or schematic biological motion. These results suggest that human biological motion might be one of the motion cues that provide the building blocks for infants’ concept of animacy.
Divisions: | Concordia University > Faculty of Arts and Science > Psychology |
---|---|
Item Type: | Article |
Refereed: | Yes |
Authors: | Poulin-Dubois, Diane and Crivello, Cristina and Wright, Kristyn |
Journal or Publication: | PLOS ONE |
Date: | 2015 |
Funders: |
|
Digital Object Identifier (DOI): | 10.1371/journal.pone.0116910 |
ID Code: | 982232 |
Deposited By: | Danielle Dennie |
Deposited On: | 17 Mar 2017 19:34 |
Last Modified: | 18 Jan 2018 17:54 |
References:
1. Bornstein MH, Arterberry ME (2010) The development of object categorization in young children: hierarchical inclusiveness, age, perceptual attribute, and group versus individual analyses. Dev Psychol 46: 350–365. doi: 10.1037/a0018411. pmid:202104952. Mandler JM, Bauer PJ, McDonough L (1991) Separating the sheep from the goats: Differentiating global categories. Cogn Psychol 23: 263–298. doi: 10.1016/0010-0285(91)90011-C.
3. Pauen S (2002) The global-to-basic level shift in infants’ categorical thinking: First evidence from a longitudinal study. Int J Behav Dev 26: 492–499. doi: 10.1080/01650250143000445.
4. Rostad K, Yott J, Poulin-Dubois D (2012) Development of categorization in infancy: Advancing forward to the animate/inanimate level. Infant Behav Dev 35: 584–595. doi: 10.1016/j.infbeh.2012.05.005. pmid:22789898
5. Younger BA, Fearing DD (2000) A Global-to-Basic Trend in Early Categorization: Evidence From a Dual-Category Habituation Task. Infancy 1: 47–58. doi: 10.1207/S15327078IN0101_05.
6. Mandler JM, Bauer PJ (1988) The cradle of categorization: Is the basic level basic? Cogn Dev 3: 247–264. doi: 10.1016/0885-2014(88)90011-1.
7. Mandler JM, McDonough L (1993) Concept formation in infancy. Cogn Dev 8: 291–318. doi: 10.1016/S0885-2014(93)80003-C.
8. Mandler JM, McDonough L (1998) On developing a knowledge base in infancy. Dev Psychol 34: 1274–1288. doi: 10.1037/0012-1649.34.6.1274. pmid:9823512
9. Elsner B, Jeschonek S, Pauen S (2013) Event-related potentials for 7-month-olds’ processing of animals and furniture items. Dev Cogn Neurosci 3: 53–60. doi: 10.1016/j.dcn.2012.09.002. pmid:23245220
10. Mandler JM (1992) How to build a baby: II. Conceptual primitives. Psychol Rev 99: 587–604. doi: 10.1037/0033-295X.99.4.587.
11. Opfer JE, Gelman SA (2011) Development of the animate-inanimate distinction. In: Goswami U, editor. The Wiley-Blackwell handbook of childhood cognitive development. Wiley-Blackwell. pp. 213–238.
12. Rakison DH, Poulin-Dubois D (2001) Developmental origin of the animate-inanimate distinction. Psychol Bull 127: 209–228. doi: 10.1037/0033-2909.127.2.209. pmid:11316011
13. Mandler JM (2004) The foundations of mind: origins of conceptual thought. New York: Oxford University Press.
14. Mandler JM (2012) On the Spatial Foundations of the Conceptual System and Its Enrichment. Cogn Sci 36: 421–451. doi: 10.1111/j.1551-6709.2012.01241.x. pmid:22435402
15. Blake R, Shiffrar M (2007) Perception of human motion. Annu Rev Psychol 58: 47–73. doi: 10.1146/annurev.psych.57.102904.190152. pmid:16903802
16. Grossman ED, Blake R (2001) Brain activity evoked by inverted and imagined biological motion. Vision Research. Vol. 41. pp. 1475–1482. doi: 10.1016/S0042-6989(00)00317-5. pmid:11322987
17. Vaina LM, Solomon J, Chowdhury S, Sinha P, Belliveau JW (2001) Functional neuroanatomy of biological motion perception in humans. Proc Natl Acad Sci U S A 98: 11656–11661. doi: 10.1073/pnas.191374198. pmid:11553776
18. Johansson G (1973) Visual perception of biological motion and a model for its analysis. Percept Psychophys 14: 201–211. doi: 10.3758/BF03212378.
19. Pavlova MA (2012) Biological motion processing as a hallmark of social cognition. Cereb Cortex 22: 981–995. doi: 10.1093/cercor/bhr156. pmid:21775676
20. Simion F, Regolin L, Bulf H (2008) A predisposition for biological motion in the newborn baby. Proc Natl Acad Sci U S A 105: 809–813. doi: 10.1073/pnas.0707021105. pmid:18174333
21. Bidet-Ildei C, Kitromilides E, Orliaguet J-P, Pavlova M, Gentaz E (2014) Preference for point-light human biological motion in newborns: contribution of translational displacement. Dev Psychol 50: 113–120. doi: 10.1037/a0032956. pmid:23668800
22. Bertenthal BI (1993) Infants’ perception of biomechanical motions: Intrinsic image and knowledge-based constraints. In: Granrud CE, editor. Visual perception and cognition in infancy. Hillsdale: Erlbaum. pp. 175–214.
23. Fox R, McDaniel C (1982) The perception of biological motion by human infants. Science 218: 486–487. doi: 10.1126/science.7123249. pmid:7123249
24. Yoon JMD, Johnson SC (2009) Biological Motion Displays Elicit Social Behavior in 12-Month-Olds. Child Dev 80: 1069–1075. doi: 10.1111/j.1467-8624.2009.01317.x. pmid:19630894
25. Arterberry ME, Bornstein MH (2002) Infant perceptual and conceptual categorization: The roles of static and dynamic stimulus attributes. Cognition 86: 1–24. doi: 10.1016/S0010-0277(02)00108-7. pmid:12208649
26. Giese MA, Poggio T (2003) Neural mechanisms for the recognition of biological movements. Nat Rev Neurosci 4: 179–192. doi: 10.1038/nrn1057. pmid:12612631
27. Michotte AE (1963) The perception of causality. Miles T, Miles E, editors New York: Basic Books.
28. Schlottmann A, Ray E (2010) Goal attribution to schematic animals: do 6-month-olds perceive biological motion as animate? Dev Sci 13: 1–10. doi: 10.1111/j.1467-7687.2009.00854.x. pmid:20121858
29. Schlottmann A, Allen D, Linderoth C, Hesketh S (2002) Perceptual Causality in Children. Child Dev 73: 1656–1677. doi: 10.1111/1467-8624.00497. pmid:12487485
30. Barr R, Vieira A, Rovee-Collier C (2002) Bidirectional priming in infants. Mem Cognit 30: 246–255. doi: 10.3758/BF03195285. pmid:12035886
31. Over H, Carpenter M (2009) Eighteen-month-old infants show increased helping following priming with affiliation. Psychol Sci a J Am Psychol Soc / APS 20: 1189–1193. doi: 10.1111/j.1467-9280.2009.02419.x.
32. Mareschal D, Tan SH (2008) The Role of Context in the Categorization of Hybrid Toy Stimuli by 18-Month-Olds. Infancy 13: 620–639. doi: 10.1080/15250000802458658.
33. Troje NF (2002) Decomposing biological motion: a framework for analysis and synthesis of human gait patterns. J Vis 2: 371–387. doi: 10.1167/2.5.2. pmid:12678652
34. VPixx Technologies Inc. (St-Bruno-de-Montarville, Québec).
35. Cohen LB, Atkinson DJ, Chaput HH (2000) Habit 2000: A new program for testing infant perception and cognition (Version 1.0) Austin: University of Texas.
36. Cohen LB (2004) Uses and misuses of habituation and related preference paradigms. Infant Child Dev 13: 349–352. doi: 10.1002/icd.355.
37. Mandler JM, Fivush R, Reznick JS (1987) The development of contextual categories. Cogn Dev 2: 339–354. doi: 10.1016/S0885-2014(87)80012-6.
38. Mareschal D, Quinn PC (2001) Categorization in infancy. Trends Cogn Sci 5: 443–450. doi: 10.1016/S1364-6613(00)01752-6. pmid:11707383
39. Starkey D (1981) The origins of concept formation: Object sorting and object preference in early infancy. Child Dev 52: 489–497. doi: 10.2307/1129166.
40. Oakes LM, Plumert JM (2002) Variability in thirteen-month-old infants’ touching patterns in the sequential-touching task. Infant Behav Dev 25: 529–549. doi: 10.1016/S0163-6383(02)00149-2.
41. Dixon WE, Price RM, Watkins M, Brink C (2007) TouchStat v. 3.00: a new and improved Monte Carlo adjunct for the sequential touching task. Behav Res Methods 39: 407–414 doi: 10.3758/BF03193010. pmid:17958152
42. Kline RB (2009) Practical Data Analysis. Becoming A Behavioural Science Researcher A Guide to Producing Research That Matters. New York, NY: Guilford Press. pp. 225–251.
43. Dixon WE, Woodward T, Merry MS (1998) TouchStat: A Monte Carlo program for calculating sequential touching probabilities. Behav Res Methods, Instruments, Comput 30: 592–604. doi: 10.3758/BF03209476.
44. Luo Y, Baillargeon R (2005) Can a self-propelled box have a goal? Psychological reasoning in 5-month-old infants. Psychol Sci a J Am Psychol Soc / APS 16: 601–608. doi: 10.1111/j.1467-9280.2005.01582.x. pmid:16102062
45. Poulin-Dubois D, Frenkiel-Fishman S, Nayer S, Johnson S (2006) Infant’s Inductive Generalization of Bodily, Motion, and Sensory Properties to Animals and People. J Cogn Dev 7: 431–453. doi: 10.1207/s15327647jcd0704_1.
46. Moore DG, Goodwin JE, George R, Axelsson EL, Braddick FMB (2007) Infants perceive human point-light displays as solid forms. Cognition 104: 377–396. doi: 10.1016/j.cognition.2006.07.007. pmid:16930578
47. Poulin-Dubois D, Lepage A, Ferland D (1996) Infants’ concept of animacy. Cogn Dev 11: 19–36. doi: 10.1016/S0885-2014(96)90026-X.
48. Pauen S, Träuble B (2009) How 7-month-olds interpret ambiguous motion events: Category-based reasoning in infancy. Cogn Psychol 59: 275–295. doi: 10.1016/j.cogpsych.2009.06.001. pmid:19596267
49. Saxe R, Tenenbaum JB, Carey S (2005) Secret agents: inferences about hidden causes by 10- and 12-month-old infants. Psychol Sci a J Am Psychol Soc / APS 16: 995–1001. doi: 10.1111/j.1467-9280.2005.01649.x. pmid:16313665
50. Markson L, Spelke ES (2006) Infants’ Rapid Learning About Self-Propelled Objects. Infancy 9: 45–71. doi: 10.1207/s15327078in0901_3.
51. Kosugi D, Fujita K (2002) How do 8-month-old infants recognize causality in object motion and that in human action? Jpn Psychol Res 44: 66–78. doi: 10.1111/1468-5884.00008.
52. Leslie AM (1984) Infant perception of a manual pick-up event. Br J Dev Psychol 2: 19–32. doi: 10.1111/j.2044-835X.1984.tb00531.x.
53. Saxe R, Tzelnic T, Carey S (2007) Knowing who dunnit: Infants identify the causal agent in an unseen causal interaction. Dev Psychol 43: 149–158. doi: 10.1037/0012-1649.43.1.149. pmid:17201515
54. Schlottmann A, Surian L (1999) Do 9-month-olds perceive causation-at-a-distance? Perception 28: 1105–1113. doi: 10.1068/p2767. pmid:10694960
55. Spelke ES, Kestenbaum R, Simons DJ, Wein D (1995) Spatiotemporal continuity, smoothness of motion and object identity in infancy. Br J Dev Psychol 13: 113–142. doi: 10.1111/j.2044-835X.1995.tb00669.x.
56. Woodward AL, Phillips A, Spelke ES (1993) Infants’ expectations about the motion of animate versus inanimate objects. Proceedings of the fifteenth annual meeting of the cognitive science society. pp. 1087–1091.
57. Pavlova M, Krägeloh-Mann I, Sokolov A, Birbaumer N (2001) Recognition of point-light biological motion displays by young children. Perception 30: 925–933. doi: 10.1068/p3157. pmid:11578078
58. Troje NF, Westhoff C (2006) The Inversion Effect in Biological Motion Perception: Evidence for a “Life Detector”? Curr Biol 16: 821–824. doi: 10.1016/j.cub.2006.03.022. pmid:16631591
Repository Staff Only: item control page