Login | Register

The Energetics of Streptococcal Enolase Octamer Formation: The Quantitative Contributions of the Last Eight Amino Acids at the Carboxy-Terminus

Title:

The Energetics of Streptococcal Enolase Octamer Formation: The Quantitative Contributions of the Last Eight Amino Acids at the Carboxy-Terminus

Kornblatt, Jack A., Quiros, Veronica and Kornblatt, M. Judith (2015) The Energetics of Streptococcal Enolase Octamer Formation: The Quantitative Contributions of the Last Eight Amino Acids at the Carboxy-Terminus. PLOS ONE, 10 (8). e0135754. ISSN 1932-6203

[thumbnail of kornblatt-pone-2015.pdf]
Preview
Text (application/pdf)
kornblatt-pone-2015.pdf - Published Version
Available under License Spectrum Terms of Access.
2MB

Official URL: http://dx.doi.org/10.1371/journal.pone.0135754

Abstract

The enolase produced by Streptococcus pyogenes is a homo-octamer whose overall shape resembles that of a donut. The octamer is best described as a tetramer of dimers. As such, it contains two types of interfaces. The first is common to almost all enolases as most enolases that have been studied are dimers. The second is unique to the octamers and includes residues near the carboxy-terminus. The primary sequence of the enolase contains 435 residues with an added 19 as an N-terminal hexahistine tag. We have systematically truncated the carboxy-terminus, individually removing the first 8 residues. This gave rise to a series of eight structures containing respectively, 435, 434, 433, 432, 431, 430, 429 and 427 residues. The truncations cause the protein to gradually dissociate from octamers to enzymatically inactive monomers with very small amounts of intermediate tetramers and dimers. We have evaluated the contributions of the missing residues to the monomer/octamer equilibrium using a combination of analytical ultracentrifugation and activity assays. For the dissociation reaction, octamer <-- --> 8 monomer, truncation of all eight C-terminal residues resulted in a diminution in the standard Gibbs energy of dissociation of about 59 kJ/mole of octamer relative to the full length protein. Considering that this change is spread over eight subunits, this translates to a change in standard Gibbs interaction energy of less than 8 kJ/mole of monomer distributed over the eight monomers. The resulting proteins, containing 434, 433, 432, 431, 430, 429 and 427 residues per monomer, showed intermediate free energies of dissociation. Finally, three other mutations were introduced into our reference protein to establish how they influenced the equilibrium. The main importance of this work is it shows that for homo-multimeric proteins a small change in the standard Gibbs interaction energy between subunits can have major physiological effects.

Divisions:Concordia University > Faculty of Arts and Science > Biology
Item Type:Article
Refereed:Yes
Authors:Kornblatt, Jack A. and Quiros, Veronica and Kornblatt, M. Judith
Journal or Publication:PLOS ONE
Date:2015
Funders:
  • Concordia Open Access Author Fund
Digital Object Identifier (DOI):10.1371/journal.pone.0135754
ID Code:982253
Deposited By: Danielle Dennie
Deposited On:21 Mar 2017 14:02
Last Modified:18 Jan 2018 17:54

References:

1. Tsatsaronis JA, Walker MJ, Sanderson-Smith ML Host responses to group a streptococcus: cell death and inflammation. PLoS Pathog 2014; 10: e1004266. doi: 10.1371/journal.ppat.1004266. ;PPATHOGENS-D-14-00604[pii]. pmid:25165887

2. Chaussee MA, Dmitriev AV, Callegari EA, Chaussee MS Growth phase-associated changes in the transcriptome and proteome of Streptococcus pyogenes. Arch Microbiol 2008; 189: 27–41. doi: 10.1007/s00203-007-0290-1. pmid:17665172

3. Pancholi V, Fischetti VA A major surface protein on group A streptococci is a glyceraldehyde-3-phosphate-dehydrogenase with multiple binding activity. J Exp Med 1992; 176: 415–426. pmid:1500854

4. Pancholi V, Fischetti VA α-enolase, a novel strong plasmin(ogen) binding protein on the surface of pathogenic streptococci. J Biol Chem 1998; 273: 14503–14515. pmid:9603964

5. Lottenberg R, Minning-Wenz D, Boyle MD Capturing host plasmin(ogen): a common mechanism for invasive pathogens? Trends Microbiol 1994; 2: 20–24. pmid:8162432

6. Attali C, Durmort C, Vernet T, Di Guilmi AM The interaction of Streptococcus pneumoniae with plasmin mediates transmigration across endothelial and epithelial monolayers by intercellular junction cleavage. Infect Immun 2008; 76: 5350–5356. IAI.00184-08 [pii]; doi: 10.1128/IAI.00184-08. pmid:18725422

7. Bergmann S, Schoenen H, Hammerschmidt S The interaction between bacterial enolase and plasminogen promotes adherence of Streptococcus pneumoniae to epithelial and endothelial cells. Int J Med Microbiol 2013; 303: 452–462. S1438-4221(13)00081-7 [pii]; doi: 10.1016/j.ijmm.2013.06.002. pmid:23906818

8. Karbassi F, Quiros V, Pancholi V, Kornblatt MJ Dissociation of the octameric enolase from S. pyogenes—one interface stabilizes another. PLoS One 2010; 5: e8810. doi: 10.1371/journal.pone.0008810. pmid:20098674

9. Kornblatt MJ, Al-Ghanim A, Kornblatt JA The effects of sodium perchlorate on rabbit muscle enolase—Spectral characterization of the monomer. Eur J Biochem 1996; 236: 78–84. pmid:8617289

10. Kornblatt MJ, Lange R, Balny C Can monomers of yeast enolase have enzymatic activity? Eur J Biochem 1998; 251: 775–780. pmid:9490051

11. Kornblatt MJ, Hui Bon HG The pressure-induced inactivation of mammalian enolases is accompanied by dissociation of the dimeric enzyme. Arch Biochem Biophys 1987; 252: 277–283. 0003-9861(87)90032-4 [pii]. pmid:3101597

12. Kornblatt MJ, Kornblatt JA, Hui Bon HG The role of water in the dissociation of enolase, a dimeric enzyme. Arch Biochem Biophys 1993; 306: 495–500. S0003986183715420 [pii]. pmid:8215454

13. Kornblatt MJ, Lange R, Balny C Use of hydrostatic pressure to produce 'native' monomers of yeast enolase. Eur J Biochem 2004; 271: 3897–3904. doi: 10.1111/j.1432-1033.2004.04326.x. ;EJB4326 [pii]. pmid:15373835

14. Zhao S, Choy BS, Kornblatt MJ Effects of the G376E and G157D mutations on the stability of yeast enolase—a model for human muscle enolase deficiency. FEBS J 2008; 275: 97–106. EJB6177 [pii]; doi: 10.1111/j.1742-4658.2007.06177.x.

15. Sims PA, Reed GH Method for the enzymatic synthesis of 2-phospho-d-glycerate from adenosine 5ΓǦ-triphosphate and d-glycerate via d-glycerate-2-kinase. Journal of Molecular Catalysis B: Enzymatic 2005; 32: 77–81.

16. Kornblatt JA, Schuck P Influence of temperature on the conformation of canine plasminogen: an analytical ultracentrifugation and dynamic light scattering study. Biochemistry 2005; 44: 13122–13131. doi: 10.1021/bi050895y. pmid:16185080

17. Schuck P Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys J 2000; 78: 1606–1619. pmid:10692345

18. Schuck P, Perugini MA, Gonzales NR, Howlett GJ, Schubert D Size-distribution analysis of proteins by analytical ultracentrifugation: strategies and application to model systems. Biophys J 2002; 82: 1096–1111. pmid:11806949

19. Sreerama N, Woody RW Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal Biochem 2000; 287: 252–260. doi: 10.1006/abio.2000.4880. ;S0003-2697(00)94880-2 [pii]. pmid:11112271

20. Whitmore L, Wallace BA Protein secondary structure analyses from circular dichroism spectroscopy: methods and reference databases. Biopolymers 2008; 89: 392–400. doi: 10.1002/bip.20853. pmid:17896349

21. Ferretti JJ, McShan WM, Ajdic D, Savic DJ, Savic G, Lyon K, et al. Complete genome sequence of an M1 strain of Streptococcus pyogenes. Proc Natl Acad Sci U S A 2001; 98: 4658–4663. doi: 10.1073/pnas.071559398. ;98/8/4658[pii]. pmid:11296296

22. Cork AJ, Ericsson DJ, Law RH, Casey LW, Valkov E, Bertozzi C, et al. Stability of the octameric structure affects plasminogen-binding capacity of streptococcal enolase. PLoS One 2015; 10: e0121764. doi: 10.1371/journal.pone.0121764. ;PONE-D-14-26935 [pii]. pmid:25807546

23. Schottel BL, Chifotides HT, Dunbar KR Anion-pi interactions. Chem Soc Rev 2008; 37: 68–83. doi: 10.1039/b614208g. pmid:18197334

24. Privalov PL, Khechinashvili NN A thermodynamic approach to the problem of stabilization of globular protein structure: a calorimetric study. J Mol Biol 1974; 86: 665–684. 0022-2836(74)90188-0 [pii]. pmid:4368360

25. Gutte B, Merrifield RB The synthesis of ribonuclease A. J Biol Chem 1971; 246: 1922–1941. pmid:5102153

26. Lin MC, Gutte B, Caldi DG, Moore S, Merrifield RB Reactivation of des (119–124) ribonuclease A by mixture with synthetic COOH-terminal peptides; the role of phenylalanine-120. J Biol Chem 1972; 247: 4768–4774. pmid:5065952

27. Hayashi R, Moore S, Merrifield RB Preparation of pancreatic ribonucleases 1–114 and 1–115 and their reactivation by mixture and synthetic COOH-terminal peptides. J Biol Chem 1973; 248: 3889–3892. pmid:4575198

28. Hodges RS, Merrifield RB The role of serine-123 in the activity and specificity of ribonuclease. Reactivation of ribonuclease 1–118 by the synthetic COOH-terminal tetradecapeptide, ribonuclease 111–124, and its O-methylserine and alanine analogs. J Biol Chem 1975; 250: 1231–1241. pmid:1112802

29. Heath WF, Merrifield RB A synthetic approach to structure-function relationships in the murine epidermal growth factor molecule. Proc Natl Acad Sci U S A 1986; 83: 6367–6371. pmid:3018729

30. Unson CG, Cypess AM, Kim HN, Goldsmith PK, Carruthers CJ, Merrifield RB, et al. Characterization of deletion and truncation mutants of the rat glucagon receptor. Seven transmembrane segments are necessary for receptor transport to the plasma membrane and glucagon binding. J Biol Chem 1995; 270: 27720–27727. pmid:7499239

31. Schwartz ML, Merz AJ Capture and release of partially zipped trans-SNARE complexes on intact organelles. J Cell Biol 2009; 185: 535–549. jcb.200811082 [pii]; doi: 10.1083/jcb.200811082. pmid:19414611

32. Martin TW, Derewenda ZS The name is bond—H bond. Nat Struct Biol 1999; 6: 403–406. doi: 10.1038/8195. pmid:10331860

33. Cork AJ, Jergic S, Hammerschmidt S, Kobe B, Pancholi V, Benesch JL, et al. Defining the structural basis of human plasminogen binding by streptococcal surface enolase. J Biol Chem 2009; 284: 17129–17137. M109.004317 [pii]; doi: 10.1074/jbc.M109.004317. pmid:19363026

34. Ehinger S, Schubert WD, Bergmann S, Hammerschmidt S, Heinz DW Plasmin(ogen)-binding alpha-enolase from Streptococcus pneumoniae: crystal structure and evaluation of plasmin(ogen)-binding sites. J Mol Biol 2004; 343: 997–1005. pmid:15476816

35. Derbise A, Song YP, Parikh S, Fischetti VA, Pancholi V Role of the C-terminal lysine residues of streptococcal surface enolase in Glu- and Lys-plasminogen-binding activities of group A streptococci. Infect Immun 2004; 72: 94–105. pmid:14688086

36. Perica T, Chothia C, Teichmann SA Evolution of oligomeric state through geometric coupling of protein interfaces. Proc Natl Acad Sci U S A 2012; 109: 8127–8132. 1120028109 [pii]; doi: 10.1073/pnas.1120028109. pmid:22566652

37. Perica T, Kondo Y, Tiwari SP, McLaughlin SH, Kemplen KR, Zhang X, et al. Evolution of oligomeric state through allosteric pathways that mimic ligand binding. Science 2014; 346: 1254346. 346/6216/1254346 [pii]; doi: 10.1126/science.1254346. pmid:25525255

38. Poulos TL, Finzel BC, Howard AJ Crystal structure of substrate-free Pseudomonas putida cytochrome P-450. Biochemistry 1986; 25: 5314–5322. pmid:3768350

39. Poulos TL, Finzel BC, Howard AJ High-resolution crystal structure of cytochrome P450cam. J Mol Biol 1987; 195: 687–700. 0022-2836(87)90190-2 [pii]. pmid:3656428

40. Wuthrich K, Otting G, Liepinsh E Protein hydration in aqueous solution. Faraday Discuss 1992; 35–45. pmid:1283962

41. Otting G, Liepinsh E, Wuthrich K Protein hydration in aqueous solution. Science 1991; 254: 974–980. pmid:1948083

42. Dall'Acqua W, Goldman ER, Lin W, Teng C, Tsuchiya D, Li H, et al. (1998) A mutational analysis of binding interactions in an antigen-antibody protein-protein complex. Biochemistry 37: 7981–7991. doi: 10.1021/bi980148j. ;bi980148j [pii]. pmid:9609690

43. Paladini AA Jr., Weber G Pressure-induced reversible dissociation of enolase. Biochemistry 1981; 20: 2587–2593. pmid:7236623

44. Kornblatt J, Kornblatt J, Hui Bon HG The pressure-induced, reversible inactivation of mouse brain enolases. Eur J Biochem 1982; 128: 577–581. pmid:7151797

45. Gerstein M, Chothia C Proteins in motion. Science 1999; 285: 1682–1683. pmid:10523185

46. Harpaz Y, Gerstein M, Chothia C Volume changes on protein folding. Structure 1994; 2: 641–649. pmid:7922041

47. Gerstein M, Chothia C Packing at the protein-water interface. Proc Natl Acad Sci U S A 1996; 93: 10167–10172. pmid:8816770

48. Timasheff SN Water as ligand: preferential binding and exclusion of denaturants in protein unfolding. Biochemistry 1992; 31: 9857–9864. pmid:1390769

49. Roche J, Dellarole M, Caro JA, Norberto DR, Garcia AE, Garcia-Moreno B, et al. Effect of internal cavities on folding rates and routes revealed by real-time pressure-jump NMR spectroscopy. J Am Chem Soc 2013; 135: 14610–14618. doi: 10.1021/ja406682e. pmid:23987660

50. van Holde K., Johnson W. C., and Shing Ho P. Principles of Physical Biochemistry. Prentice-Hall, Inc.; 1998
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top