Login | Register

Ultra-thin, single-layer polarization rotator

Title:

Ultra-thin, single-layer polarization rotator

Son, T. V., Truong, Vo-Van ORCID: https://orcid.org/0000-0003-3535-3749, Do, P. A. and Haché, A. (2016) Ultra-thin, single-layer polarization rotator. AIP Advances, 6 (8). 085102. ISSN 2158-3226

[thumbnail of truong-aip-2016.pdf]
Preview
Text (application/pdf)
truong-aip-2016.pdf - Published Version
Available under License Spectrum Terms of Access.
1MB

Official URL: http://dx.doi.org/10.1063/1.4960552

Abstract

We demonstrate light polarization control over a broad spectral range by a uniform layer of vanadium dioxide as it undergoes a phase transition from insulator to metal. Changes in refractive indices create unequal phase shifts on s- and p-polarization components of incident light, and rotation of linear polarization shows intensity modulation by a factor of 103 when transmitted through polarizers. This makes possible polarization rotation devices as thin as 50 nm that would be activated thermally, optically or electrically.

Divisions:Concordia University > Faculty of Arts and Science > Physics
Item Type:Article
Refereed:Yes
Authors:Son, T. V. and Truong, Vo-Van and Do, P. A. and Haché, A.
Journal or Publication:AIP Advances
Date:2016
Funders:
  • Concordia Open Access Author Fund
Digital Object Identifier (DOI):10.1063/1.4960552
Keywords:Polarization, Polarizers, Refractive index, Vanadium, Metal phase transitions
ID Code:982269
Deposited By: Danielle Dennie
Deposited On:21 Mar 2017 17:53
Last Modified:18 Jan 2018 17:54

References:

1. S. Kahl and A.M. Grishin, “Enhanced Faraday rotation in all-garnet magneto-optical photonic crystal,” Applied Physics Letters 84, 1438-1440 (2004). https://doi.org/10.1063/1.1651324

2. N.E. Khokhlov, A.R. Prokopov, A.N. Shaposhnikov, V. N. Berzhansky, M. A. Kozhaev, S. N. Andreev, A. P. Ravishankar, V. G. Achanta, D. A. Bykov, and A. K. Zvezdin, “Photonic crystals with plasmonic patterns: novel type of the heterostructures for enhanced magneto-optical activity,” Journal of Physics D: Applied Physics 48, 1-9 (2015). https://doi.org/10.1088/0022-3727/48/9/095001

3. A. Cavalleri, Th. Dekorsy, H.H.W. Chong, J.C. Kieffer, and R.W. Schoenlein, “Evidence for a structurally-driven insulator-to-metal transition in VO2: A view from the ultrafast timescale,” Phys. Rev. B 70, 161102 (2004). https://doi.org/10.1103/PhysRevB.70.161102

4. M. Rini, A. Cavalleri, and R. Schoenlein, “Photoinduced phase transition in VO2 nanocrystals: ultrafast control of surface-plasmon resonance,” Optics Letters 30, pp.558-560 (2005). https://doi.org/10.1364/OL.30.000558

5. M. F. Becker, A. B. Buckman, R. M. Walser, T. Lépine, P. Georges, and A.Brun, “Femtosecond laser excitation of the semiconductor-metal phase transition in VO2,” Appl. Phys. Lett. 65, 1507 (1994). https://doi.org/10.1063/1.112974

6. G. Stefanovich, A. Pergament, and D. Stefanovich, “Electrical switching and Mott transitions in VO2,” J. Phys. Condens. Matter 12, 8837–8845 (2000). https://doi.org/10.1088/0953-8984/12/41/310

7. B. A. Kruger, A. Joushaghani, and J. K. S. Poon, “Design of electrically driven hybrid vanadium dioxide (VO2) plasmonic switches,” Opt. Express 23598 (2012). https://doi.org/10.1364/OE.20.023598

8. C. Ba, S. T. Bah, M. D’Auteuil, R. Vallée, and A. Pandurang, “Fabrication of high-quality VO2 thin films by ion-assisted dual ac magnetron sputtering,” ACS Appl. Mater. Interfaces 5, 12520–12525 (2013). https://doi.org/10.1021/am403807u

9. V. Ashrit and R. Vallée, “VO2 thin films based active and passive thermochromic devices for energy management applications,” Curr. Appl. Phys. 14, 1531–1537 (2014). https://doi.org/10.1016/j.cap.2014.09.005

10. T. V. Son, K. Zongo, C. Ba, G. Beydaghyan, and A. Haché, “Pure optical phase control in vanadium dioxide thin films,” Opt. Commun. 320, 151 (2014). https://doi.org/10.1016/j.optcom.2014.01.037

11. P. Cormier, T. V. Son, J. Thibodeau, A. Doucet, V.-V. Truong, and A. Haché, “Vanadium dioxide as a material to control light polarization in the visible and near infrared,” submitted to Optics Communications (2016).

12. T. Ben Messaoud, G. Landry, J.-P. Gariépy, B. Ramamoorthy, P.V. Ashrit, and A. Haché, “High contrast optical switching in VO2 thin films,” Opt. Comm. 281, 6024 (2008). https://doi.org/10.1016/j.optcom.2008.09.027

13. Su Seok Choi, Flynn Castles, Stephen M. Morris, and Harry J. Coles, “High contrast chiral nematic liquid crystal device using negative dielectric material,” Appl. Phys. Lett. 95, 193502 (2009). https://doi.org/10.1063/1.3248219

14. H.Oku and M.Ishikawa, “High-speed liquid lens with 2 ms response and 80.3 nm root-mean-square wavefront error,” Appl. Phys. Lett. 94, 221108 (2009). https://doi.org/10.1063/1.3143624

15. Hiroyuki Yamada, Maya Marinova, Philippe Altuntas, Arnaud Crassous, Laura Bégon-Lours, Stéphane Fusil, Eric Jacquet, Vincent Garcia, Karim Bouzehouane, Alexandre Gloter, Javier E. Villegas, Agnés Barthélémy, and Manuel Bibes, “Ferroelectric control of a Mott insulator,” Scientific Reports 3, 2834 (2013).
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top