Mostafa, Ahmad ORCID: https://orcid.org/0000-0001-5625-1106, Picazo Rubio, Ignacio, Brailovski, Vladimir, Jahazi, Mohammad and Medraj, Mamoun (2017) Structure, Texture and Phases in 3D Printed IN718 Alloy Subjected to Homogenization and HIP Treatments. Metals, 7 (196). ISSN 2075-4701
Preview |
Text (Publisher's version) (application/pdf)
11MBmetals-07-00196 (2).pdf - Published Version Available under License Spectrum Terms of Access. |
Official URL: https://doi.org/10.3390/met7060196
Abstract
3D printing results in anisotropy in the microstructure and mechanical properties. The focus of this study is to investigate the structure, texture and phase evolution of the as-printed and heat treated IN718 superalloy. Cylindrical specimens, printed by powder-bed additive manufacturing technique, were subjected to two post-treatments: homogenization (1100 °C, 1 h, furnace cooling) and hot isostatic pressing (HIP) (1160 °C, 100 MPa, 4 h, furnace cooling). The Selective laser melting (SLM) printed microstructure exhibited a columnar architecture, parallel to the building direction, due to the heat flow towards negative z-direction. Whereas, a unique structural morphology was observed in the x-y plane due to different cooling rates resulting from laser beam overlapping. Post-processing treatments reorganized the columnar structure of a strong {002} texture into fine columnar and/or equiaxed grains of random orientations. Equiaxed structure of about 150 µm average grain size, was achieved after homogenization and HIP treatments. Both δ-phase and MC-type brittle carbides, having rough morphologies, were formed at the grain boundaries. Delta-phase formed due to γ″-phase dissolution in the γ matrix, while MC-type carbides nucleates grew by diffusion of solute atoms. The presence of (Nb0.78Ti0.22)C carbide phase, with an fcc structure having a lattice parameter a = 4.43 Å, was revealed using Energy dispersive spectrometer (EDS) and X-ray diffractometer (XRD) analysis. The solidification behavior of IN718 alloy was described to elucidate the evolution of different phases during selective laser melting and post-processing heat treatments of IN718
Divisions: | Concordia University > Gina Cody School of Engineering and Computer Science > Mechanical and Industrial Engineering |
---|---|
Item Type: | Article |
Refereed: | Yes |
Authors: | Mostafa, Ahmad and Picazo Rubio, Ignacio and Brailovski, Vladimir and Jahazi, Mohammad and Medraj, Mamoun |
Journal or Publication: | Metals |
Date: | 30 May 2017 |
Digital Object Identifier (DOI): | 10.3390/met7060196 |
Keywords: | Inconel 718; additive manufacturing; 3D printing; hot isostatic pressing (HIP); homogenization treatment; selective laser melting (SLM); Electron backscattered diffraction (EBSD) |
ID Code: | 982588 |
Deposited By: | AHMAD MOSTAFA |
Deposited On: | 01 Jun 2017 13:02 |
Last Modified: | 18 Jan 2018 17:55 |
Related URLs: |
References:
1. Pacurar, R.; Pacurar, A. Applications of the selective laser melting technology in the industrial and medical fields. In New Trends in 3D Printing; Shishkovsky, I.V.; INTECH: Rijeka, Croatia 2016, doi:10.5772/63038.2. Wang, X.; Gong, X.; Chou, K. Review on powder-bed laser additive manufacturing of Inconel 718 parts. In Proceedings of the ASME 2015 International Manufacturing Science and Engineering Conference, 8–12 June, 2015, Charlotte, NC, USA, doi:10.1115/MSEC2015-9322.
3. Eisenhut, M.; Langefeld, B. Additive Manufacturing: A Game Changer for the Manufacturing Industry; Roland Berger Strategy Consultants GmbH: Munich, Germany, 2013.
4. Murr, L.E.; Martinez, E.; Gaytan, S.M.; Ramirez, D.A.; Machado, B.I.; Shindo, P.W.; Martinez, J.L.; Medina, F.; Wooten, J.; Ciscel, D.; et al. Microstructural architecture, microstructures, and mechanical properties for a nickel-base superalloy fabricated by electron beam melting. Metall. Mater. Trans. A 2011, 42, 3491–3508, doi:10.1007/s11661-011-0748-2.
5. Kistler, N.A. Characterization of Inconel 718 Fabricated through Powder Bed Fusion Additive Manufacturing. Bachelor’s Thesis, The Pennsylvania State University, University Park, PA, USA, spring 2015.
6. Prasad, K.; Sarkar, R.; Ghosal, P.; Kumar, V. Tensile deformation behavior of forged disc of IN718 superalloy at 650 °C. Mater. Des. 2010, 31, 4502–4507, doi:10.1016/j.matdes.2010.04.019.
7. Paul, C.P.; Ganesh, P.; Mishra, S.K.; Bhargava, P.; Negi, J.; Nath, A.K. Investigating laser rapid manufacturing for Inconel-625 components. Opt. Laser Technol. 2007, 39, 800–805, doi:10.1016/j.optlastec.2006.01.008.
8. Ganesh, P.; Kaul, R.; Paul, C.P.; Tiwari, P.; Rai, S.K.; Prasad, R.C.; Kukreja, L.M. Fatigue and fracture toughness characteristics of laser rapid manufactured Inconel 625 structures. Mater. Sci. Eng. A 2010, 527, 7490–7497, doi:10.1016/j.msea.2010.08.034.
9. Zhang, Y.N.; Cao, X.; Wanjara, P.; Medraj, M. Fiber laser deposition of Inconel 718 using powders. In Proceedings of the Materials Science and Technology (MS&T) 2013 Conference, 27–31 October, 2013, Montreal, QC, Canada.
10. Mumtaz, K.; Hopkinson, N. Selective laser melting of Inconel 625 using pulse shaping. Rapid Prototyp. J. 2010, 16, 248–257, doi:10.1108/13552541011049261.
11. Abioye, T.E.; Folkes, J.; Clare, A.T. A parametric study of Inconel 625 wire laser deposition. J. Mater. Process. Technol. 2013, 213, 2145–2151, doi:10.1016/j.jmatprotec.2013.06.007.
12. Dinda, G.P.; Dasgupta, A.K.; Mazumder, J. Laser aided direct metal deposition of Inconel 625 superalloy: Microstructural evolution and thermal stability. Mater. Sci. Eng. A 2009, 509, 98–104, doi:10.1016/j.msea.2009.01.009.
13. Jia, Q.; Gu, D. Selective laser melting additive manufacturing of Inconel 718 superalloy parts: Densification, microstructure and properties. J. Alloys Compd. 2014, 585, 713–721, doi:10.1016/j.jallcom.2013.09.171.
14. Trosch, T.; Strößner, J.; Völkl, R.; Glatzel, U. Microstructure and mechanical properties of selective laser melted Inconel 718 compared to forging and casting. Mater. Lett. 2016, 164, 428–431, doi:10.1016/j.matlet.2015.10.136.
15. Choi, J.-P.; Shin, G.-H.; Yang, S.; Yang, D.-Y.; Lee, J.-S.; Brochu, M.; Yu, J.-H. Densification and microstructural investigation of Inconel 718 parts fabricated by selective laser melting. Powder Technol. 2017, 310, 60–66, doi:10.1016/j.powtec.2017.01.030.
16. Wang, Z.; Guan, K.; Gao, M.; Li, X.; Chen, X.; Zeng, X. The microstructure and mechanical properties of deposited-IN718 by selective laser melting. J. Alloys Compd. 2012, 513, 518–523, doi:10.1016/j.jallcom.2011.10.107.
17. Amato, K.N.; Gaytan, S.M.; Murr, L.E.; Martinez, E.; Shindo, P.W.; Hernandez, J.; Collins, S.; Medina, F. Microstructures and mechanical behavior of Inconel 718 fabricated by selective laser melting. Acta Mater. 2012, 60, 2229–2239, doi:10.1016/j.actamat.2011.12.032.
18. Parimi, L.L.; Ravi, G.A.; Clark, D.; Attallah, M.M. Microstructural and texture development in direct laser fabricated IN718. Mater. Charact. 2014, 89, 102–111, doi:10.1016/j.matchar.2013.12.012.
19. Wei, H.L.; Mazumder, J.; DebRoy, T. Evolution of solidification texture during additive manufacturing. Sci. Rep. 2015, 5, 16446, doi:10.1038/srep16446.
20. Blackwell, P.L. The mechanical and microstructural characteristics of laser-deposited IN718. J. Mater. Process. Technol. 2005, 170, 240–246, doi:10.1016/j.jmatprotec.2005.05.005.
21. EOS Gmbh Electro Optical Systems. EOS Nickelalloy in718 Datasheet; EOS Gmbh Electro Optical Systems: Munich, Germany, 2014.
22. Smith, D.H.; Bicknell, J.; Jorgensen, L.; Patterson, B.M.; Cordes, N.L.; Tsukrov, I.; Knezevic, M. Microstructure and mechanical behavior of direct metal laser sintered Inconel alloy 718. Mater. Charact. 2016, 113, 1–9, doi:10.1016/j.matchar.2016.01.003.
23. Thompson, R.G.; Dobbs, J.; Mayo, D. The Effect of Heat Treatment on Microfissuring in Alloy 718. Weld J. 1986, 65, 299–304.
24. X’Pert HighScore Plus, version 3.0.2; Software for Phase Identification from Powder Diffraction Data; PANalytical: Almelo, The Netherlands, 2011.
25. Pierre, V. Pearson’s Crystal Data, Crystal Structure Database for Inorganic Compounds (on CD-ROM); ASM International: Materials Park, OH, USA, 2010.
26. Zhang, S.; Zhao, D. Aerospace Materials Handbook; CRC Press: Boca Raton, FL, USA, 2013.
27. Mullis, A.M.; Farrell, L.; Cochrane, R.F.; Adkins, N.J. Estimation of cooling rates during close-coupled gas atomization using secondary dendrite arm spacing measurement. Metall. Mater. Trans. B 2013, 44, 992–999. doi:10.1007/s11663-013-9856-2.
28. Murr, L.E.; Martinez, E.; Amato, K.N.; Gaytan, S.M.; Hernandez, J.; Ramirez, D.A.; Shindo, P.W.; Medina, F.; Wicker, R.B. Fabrication of metal and alloy components by additive manufacturing: Examples of 3D materials science. J. Mater. Res. Technol. 2012, 1, 42–54, doi:10.1016/S2238-7854(12)70009-1.
29. Amine, T.; Newkirk, J.W.; Liou, F. An investigation of the effect of direct metal deposition parameters on the characteristics of the deposited layers. Case Stud. Ther. Eng. 2014, 3, 21–34, doi:10.1016/j.csite.2014.02.002.
30. Antonsson, T.; Fredriksson, H. The effect of cooling rate on the solidification of Inconel 718. Metall. Mater. Trans. B 2005, 36, 85–96, doi:10.1007/s11663-005-0009-0.
31. Vrancken, B.; Wauthlé, R.; Kruth, J.-P.; Humbeeck, J.V. Study of the influence of material properties on residual stress in selective laser melting. In Proceedings of the Solid Free Fabrication Symposium, KU Leuven, Austin, TX, USA, 2–14 August 2013; pp. 1–15.
32. Saeidi, K.; Gao, X.; Zhong, Y.; Shen, Z.J. Hardened austenite steel with columnar sub-grain structure formed by laser melting. Mater. Sci. Eng. A 2015, 625, 221–229, doi:10.1016/j.msea.2014.12.018.
33. Zheng, L.; Liu, Y.; Sun, S.; Zhang, H. Selective laser melting of Al–8.5Fe–1.3V–1.7Si alloy: Investigation on the resultant microstructure and hardness. Chin. J. Aeronaut. 2015, 28, 564–569, doi:10.1016/j.cja.2015.01.013.
34. Zhou, X.; Li, K.; Zhang, D.; Liu, X.; Ma, J.; Liu, W.; Shen, Z. Textures formed in a CoCrMo alloy by selective laser melting. J. Alloys Compd. 2015, 631, 153–164, doi:10.1016/j.jallcom.2015.01.096.
35. Liu, F.; Lin, X.; Yang, G.; Song, M.; Chen, J.; Huang, W. Recrystallization and its influence on microstructures and mechanical properties of laser solid formed nickel base superalloy Inconel 718. Rare Met. 2011, 30, 433–438, doi:10.1007/s12598-011-0319-0.
36. Lewandowski, M.S.; Sahai, V.; Wilcox, R.C.; Matlock, C.A.; Overfelt, R.A. High temperature deformation of Inconel 718 castings. In Superalloys 718, 625, 706 and Various. Dérivatives; Loria, E.A., Ed.; TMS-AIME: Warrendale, PA, USA, 1994; pp. 345–354, doi:10.7449/1994/Superalloys_1994_345_354.
37. Zhang, F.; Levine, L.E.; Allen, A.J.; Campbell, C.E.; Lass, E.A.; Cheruvathur, S.; Stoudt, M.R.; Williams, M. E; Idell, Y. Homogenization kinetics of a nickel-based superalloy produced by powder bed fusion laser sintering. Scr. Mater. 2017, 113, 98–102, doi:10.1016/j.scriptamat.2016.12.037.
38. Sochalski-Kolbus, L.M.; Payzant, E.A.; Cornwell, P.A.; Watkins, T.R.; Babu, S.S.; Dehoff, R.R.; Lorenz, M.; Ovchinnikova, M.; Duty, C. Comparison of residual stresses in Inconel 718 simple parts made by electron beam melting and direct laser metal sintering. Metall. Mater. Trans. A 2015, 46, 1419–1432, doi:10.1007/s11661-014-2722-2.
39. Slama, C.; Servant, C.; Cizeron, G. Aging of the Inconel 718 alloy between 500 and 750 °C. J. Mater. Res. 2011, 12, 2298–2316, doi:10.1557/JMR.1997.0306.
40. Azadian, S.; Wei, L.-Y.; Warren, R. Delta phase precipitation in Inconel 718. Mater. Charact. 2004, 53, 7–16, doi:10.1016/j.matchar.2004.07.004.
41. Idell, Y.; Levine, L.E.; Allen, A.J.; Zhang, F.; Campbell, C.E.; Olson, G.B.; Gong, J.; Snyder, D.R.; Deutchman, H.Z. Unexpected δ-phase formation in additive-manufactured Ni-based superalloy. JOM 2016, 68, 950–959, doi:10.1007/s11837-015-1772-2.
42. Jouiad, M.; Marin, E.; Devarapalli, R.S.; Cormier, J.; Ravaux, F.; Le Gall, C.; Franchet, J.M. Microstructure and mechanical properties evolutions of alloy 718 during isothermal and thermal cycling over-aging. Mater. Des. 2016, 102, 284–296, doi:10.1016/j.matdes.2016.04.048.
43. Rao, G.; Sankaranarayana, M.; Balasubramaniam, S. Hot isostatic pressing technology for defence and space applications. Def. Sci. J. 2012, 62, 73–80, doi:10.14429/dsj.62.372.
44. Clark, D.; Bache, M.R.; Whittaker, M.T. Shaped metal deposition of a nickel alloy for aero engine applications. J. Mater. Process. Technol. 2008, 203, 439–448, doi:10.1016/j.jmatprotec.2007.10.051.
45. Janaki Ram, G.D.; Venugopal Reddy, A.; Prasad Rao, K.; Reddy, G.M.; Sarin Sundar, J.K. Microstructure and tensile properties of Inconel 718 pulsed Nd-YAG laser welds. J. Mater. Process. Technol. 2005, 167, 73–82, doi:10.1016/j.jmatprotec.2004.09.081.
46. Schirra, J.J.; Caless, R.H.; Hatala, R.W. The effect of laves phase on the mechanical properties of wrought and cast + HIP Inconel 718. In Superalloys 718, 625, 706 and Various. Dérivatives; Loria, E.A., Ed.; TMS-AIME: Warrendale, PA, USA, 1991; pp. 375–388, doi:10.7449/1991/Superalloys_1991_375_388.
47. Qi, H.; Azer, M.; Ritter, A. Studies of standard heat treatment effects on microstructure and mechanical properties of laser net shape manufactured Inconel 718 Metall. Mater. Trans. A 2009, 40, 2410–2422, doi:10.1007/s11661-009-9949-3.
48. Mitchell, A.; Schmalz, A.J.; Schvezov, C.; Cockroft, S. The precipitation of primary carbides in alloy 718. In Superalloys 718, 625 and Various Derivatives; Loria, E.A., Ed.; TMS-AIME: Warrendale, PA, USA, 1994; pp. 65–78.
49. Bouse, G.K. Application of a modified phase diagram to the production of cast alloy 718 components. In Superalloy 718–Metallurgy Application; Loria, E.A., Ed.; TMS-AIME: Warrendale, PA, USA, 1989; pp. 69–79.
50. Cieslak, M.J.; Knorovsky, G.A.; Headley, T.J.; Romig, A.D.J. The solidification metallurgy of alloy 718 and other Nb-containing superalloys. Superalloy 1989, 718, 59–68.
51. Murata, Y.; Morinaga, M.; Yukawa, N.; Ogawa, H.; Kato, M. Solidification structures of Inconel 718 with microalloying elements. Superalloys 1994, 718, 81–88.
52. Sjoberg, G.; Ingesten, N.G.; Carlson, R.G. Grain boundary δ-phase morphologies, carbides and notch rupture sensitivity of cast alloy 718. Superalloys 1991, 718, 603–620, doi:10.7449/1991/Superalloys_1991_603_620.
53. Lifshitz, I.M.; Slyozov, V.V. The kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Solids 1961, 19, 35–50, doi:10.1016/0022-3697(61)90054-3.
54. Oradei-Basile, A.; Radavich, J.F. A current TTT diagram for wrought alloy 718. Superalloys 1991, 718,
325–335
Repository Staff Only: item control page