Login | Register

Structure, Texture and Phases in 3D Printed IN718 Alloy Subjected to Homogenization and HIP Treatments

Title:

Structure, Texture and Phases in 3D Printed IN718 Alloy Subjected to Homogenization and HIP Treatments

Mostafa, Ahmad ORCID: https://orcid.org/0000-0001-5625-1106, Picazo Rubio, Ignacio, Brailovski, Vladimir, Jahazi, Mohammad and Medraj, Mamoun (2017) Structure, Texture and Phases in 3D Printed IN718 Alloy Subjected to Homogenization and HIP Treatments. Metals, 7 (196). ISSN 2075-4701

[thumbnail of Publisher's version]
Preview
Text (Publisher's version) (application/pdf)
metals-07-00196 (2).pdf - Published Version
Available under License Spectrum Terms of Access.
11MB

Official URL: https://doi.org/10.3390/met7060196

Abstract

3D printing results in anisotropy in the microstructure and mechanical properties. The focus of this study is to investigate the structure, texture and phase evolution of the as-printed and heat treated IN718 superalloy. Cylindrical specimens, printed by powder-bed additive manufacturing technique, were subjected to two post-treatments: homogenization (1100 °C, 1 h, furnace cooling) and hot isostatic pressing (HIP) (1160 °C, 100 MPa, 4 h, furnace cooling). The Selective laser melting (SLM) printed microstructure exhibited a columnar architecture, parallel to the building direction, due to the heat flow towards negative z-direction. Whereas, a unique structural morphology was observed in the x-y plane due to different cooling rates resulting from laser beam overlapping. Post-processing treatments reorganized the columnar structure of a strong {002} texture into fine columnar and/or equiaxed grains of random orientations. Equiaxed structure of about 150 µm average grain size, was achieved after homogenization and HIP treatments. Both δ-phase and MC-type brittle carbides, having rough morphologies, were formed at the grain boundaries. Delta-phase formed due to γ″-phase dissolution in the γ matrix, while MC-type carbides nucleates grew by diffusion of solute atoms. The presence of (Nb0.78Ti0.22)C carbide phase, with an fcc structure having a lattice parameter a = 4.43 Å, was revealed using Energy dispersive spectrometer (EDS) and X-ray diffractometer (XRD) analysis. The solidification behavior of IN718 alloy was described to elucidate the evolution of different phases during selective laser melting and post-processing heat treatments of IN718

Divisions:Concordia University > Gina Cody School of Engineering and Computer Science > Mechanical and Industrial Engineering
Item Type:Article
Refereed:Yes
Authors:Mostafa, Ahmad and Picazo Rubio, Ignacio and Brailovski, Vladimir and Jahazi, Mohammad and Medraj, Mamoun
Journal or Publication:Metals
Date:30 May 2017
Digital Object Identifier (DOI):10.3390/met7060196
Keywords:Inconel 718; additive manufacturing; 3D printing; hot isostatic pressing (HIP); homogenization treatment; selective laser melting (SLM); Electron backscattered diffraction (EBSD)
ID Code:982588
Deposited By: AHMAD MOSTAFA
Deposited On:01 Jun 2017 13:02
Last Modified:18 Jan 2018 17:55
Related URLs:

References:

1. Pacurar, R.; Pacurar, A. Applications of the selective laser melting technology in the industrial and medical fields. In New Trends in 3D Printing; Shishkovsky, I.V.; INTECH: Rijeka, Croatia 2016, doi:10.5772/63038.
2. Wang, X.; Gong, X.; Chou, K. Review on powder-bed laser additive manufacturing of Inconel 718 parts. In Proceedings of the ASME 2015 International Manufacturing Science and Engineering Conference, 8–12 June, 2015, Charlotte, NC, USA, doi:10.1115/MSEC2015-9322.
3. Eisenhut, M.; Langefeld, B. Additive Manufacturing: A Game Changer for the Manufacturing Industry; Roland Berger Strategy Consultants GmbH: Munich, Germany, 2013.
4. Murr, L.E.; Martinez, E.; Gaytan, S.M.; Ramirez, D.A.; Machado, B.I.; Shindo, P.W.; Martinez, J.L.; Medina, F.; Wooten, J.; Ciscel, D.; et al. Microstructural architecture, microstructures, and mechanical properties for a nickel-base superalloy fabricated by electron beam melting. Metall. Mater. Trans. A 2011, 42, 3491–3508, doi:10.1007/s11661-011-0748-2.
5. Kistler, N.A. Characterization of Inconel 718 Fabricated through Powder Bed Fusion Additive Manufacturing. Bachelor’s Thesis, The Pennsylvania State University, University Park, PA, USA, spring 2015.
6. Prasad, K.; Sarkar, R.; Ghosal, P.; Kumar, V. Tensile deformation behavior of forged disc of IN718 superalloy at 650 °C. Mater. Des. 2010, 31, 4502–4507, doi:10.1016/j.matdes.2010.04.019.
7. Paul, C.P.; Ganesh, P.; Mishra, S.K.; Bhargava, P.; Negi, J.; Nath, A.K. Investigating laser rapid manufacturing for Inconel-625 components. Opt. Laser Technol. 2007, 39, 800–805, doi:10.1016/j.optlastec.2006.01.008.
8. Ganesh, P.; Kaul, R.; Paul, C.P.; Tiwari, P.; Rai, S.K.; Prasad, R.C.; Kukreja, L.M. Fatigue and fracture toughness characteristics of laser rapid manufactured Inconel 625 structures. Mater. Sci. Eng. A 2010, 527, 7490–7497, doi:10.1016/j.msea.2010.08.034.
9. Zhang, Y.N.; Cao, X.; Wanjara, P.; Medraj, M. Fiber laser deposition of Inconel 718 using powders. In Proceedings of the Materials Science and Technology (MS&T) 2013 Conference, 27–31 October, 2013, Montreal, QC, Canada.
10. Mumtaz, K.; Hopkinson, N. Selective laser melting of Inconel 625 using pulse shaping. Rapid Prototyp. J. 2010, 16, 248–257, doi:10.1108/13552541011049261.
11. Abioye, T.E.; Folkes, J.; Clare, A.T. A parametric study of Inconel 625 wire laser deposition. J. Mater. Process. Technol. 2013, 213, 2145–2151, doi:10.1016/j.jmatprotec.2013.06.007.
12. Dinda, G.P.; Dasgupta, A.K.; Mazumder, J. Laser aided direct metal deposition of Inconel 625 superalloy: Microstructural evolution and thermal stability. Mater. Sci. Eng. A 2009, 509, 98–104, doi:10.1016/j.msea.2009.01.009.
13. Jia, Q.; Gu, D. Selective laser melting additive manufacturing of Inconel 718 superalloy parts: Densification, microstructure and properties. J. Alloys Compd. 2014, 585, 713–721, doi:10.1016/j.jallcom.2013.09.171.
14. Trosch, T.; Strößner, J.; Völkl, R.; Glatzel, U. Microstructure and mechanical properties of selective laser melted Inconel 718 compared to forging and casting. Mater. Lett. 2016, 164, 428–431, doi:10.1016/j.matlet.2015.10.136.
15. Choi, J.-P.; Shin, G.-H.; Yang, S.; Yang, D.-Y.; Lee, J.-S.; Brochu, M.; Yu, J.-H. Densification and microstructural investigation of Inconel 718 parts fabricated by selective laser melting. Powder Technol. 2017, 310, 60–66, doi:10.1016/j.powtec.2017.01.030.
16. Wang, Z.; Guan, K.; Gao, M.; Li, X.; Chen, X.; Zeng, X. The microstructure and mechanical properties of deposited-IN718 by selective laser melting. J. Alloys Compd. 2012, 513, 518–523, doi:10.1016/j.jallcom.2011.10.107.
17. Amato, K.N.; Gaytan, S.M.; Murr, L.E.; Martinez, E.; Shindo, P.W.; Hernandez, J.; Collins, S.; Medina, F. Microstructures and mechanical behavior of Inconel 718 fabricated by selective laser melting. Acta Mater. 2012, 60, 2229–2239, doi:10.1016/j.actamat.2011.12.032.
18. Parimi, L.L.; Ravi, G.A.; Clark, D.; Attallah, M.M. Microstructural and texture development in direct laser fabricated IN718. Mater. Charact. 2014, 89, 102–111, doi:10.1016/j.matchar.2013.12.012.
19. Wei, H.L.; Mazumder, J.; DebRoy, T. Evolution of solidification texture during additive manufacturing. Sci. Rep. 2015, 5, 16446, doi:10.1038/srep16446.
20. Blackwell, P.L. The mechanical and microstructural characteristics of laser-deposited IN718. J. Mater. Process. Technol. 2005, 170, 240–246, doi:10.1016/j.jmatprotec.2005.05.005.
21. EOS Gmbh Electro Optical Systems. EOS Nickelalloy in718 Datasheet; EOS Gmbh Electro Optical Systems: Munich, Germany, 2014.
22. Smith, D.H.; Bicknell, J.; Jorgensen, L.; Patterson, B.M.; Cordes, N.L.; Tsukrov, I.; Knezevic, M. Microstructure and mechanical behavior of direct metal laser sintered Inconel alloy 718. Mater. Charact. 2016, 113, 1–9, doi:10.1016/j.matchar.2016.01.003.
23. Thompson, R.G.; Dobbs, J.; Mayo, D. The Effect of Heat Treatment on Microfissuring in Alloy 718. Weld J. 1986, 65, 299–304.
24. X’Pert HighScore Plus, version 3.0.2; Software for Phase Identification from Powder Diffraction Data; PANalytical: Almelo, The Netherlands, 2011.
25. Pierre, V. Pearson’s Crystal Data, Crystal Structure Database for Inorganic Compounds (on CD-ROM); ASM International: Materials Park, OH, USA, 2010.
26. Zhang, S.; Zhao, D. Aerospace Materials Handbook; CRC Press: Boca Raton, FL, USA, 2013.
27. Mullis, A.M.; Farrell, L.; Cochrane, R.F.; Adkins, N.J. Estimation of cooling rates during close-coupled gas atomization using secondary dendrite arm spacing measurement. Metall. Mater. Trans. B 2013, 44, 992–999. doi:10.1007/s11663-013-9856-2.
28. Murr, L.E.; Martinez, E.; Amato, K.N.; Gaytan, S.M.; Hernandez, J.; Ramirez, D.A.; Shindo, P.W.; Medina, F.; Wicker, R.B. Fabrication of metal and alloy components by additive manufacturing: Examples of 3D materials science. J. Mater. Res. Technol. 2012, 1, 42–54, doi:10.1016/S2238-7854(12)70009-1.
29. Amine, T.; Newkirk, J.W.; Liou, F. An investigation of the effect of direct metal deposition parameters on the characteristics of the deposited layers. Case Stud. Ther. Eng. 2014, 3, 21–34, doi:10.1016/j.csite.2014.02.002.
30. Antonsson, T.; Fredriksson, H. The effect of cooling rate on the solidification of Inconel 718. Metall. Mater. Trans. B 2005, 36, 85–96, doi:10.1007/s11663-005-0009-0.
31. Vrancken, B.; Wauthlé, R.; Kruth, J.-P.; Humbeeck, J.V. Study of the influence of material properties on residual stress in selective laser melting. In Proceedings of the Solid Free Fabrication Symposium, KU Leuven, Austin, TX, USA, 2–14 August 2013; pp. 1–15.
32. Saeidi, K.; Gao, X.; Zhong, Y.; Shen, Z.J. Hardened austenite steel with columnar sub-grain structure formed by laser melting. Mater. Sci. Eng. A 2015, 625, 221–229, doi:10.1016/j.msea.2014.12.018.
33. Zheng, L.; Liu, Y.; Sun, S.; Zhang, H. Selective laser melting of Al–8.5Fe–1.3V–1.7Si alloy: Investigation on the resultant microstructure and hardness. Chin. J. Aeronaut. 2015, 28, 564–569, doi:10.1016/j.cja.2015.01.013.
34. Zhou, X.; Li, K.; Zhang, D.; Liu, X.; Ma, J.; Liu, W.; Shen, Z. Textures formed in a CoCrMo alloy by selective laser melting. J. Alloys Compd. 2015, 631, 153–164, doi:10.1016/j.jallcom.2015.01.096.
35. Liu, F.; Lin, X.; Yang, G.; Song, M.; Chen, J.; Huang, W. Recrystallization and its influence on microstructures and mechanical properties of laser solid formed nickel base superalloy Inconel 718. Rare Met. 2011, 30, 433–438, doi:10.1007/s12598-011-0319-0.
36. Lewandowski, M.S.; Sahai, V.; Wilcox, R.C.; Matlock, C.A.; Overfelt, R.A. High temperature deformation of Inconel 718 castings. In Superalloys 718, 625, 706 and Various. Dérivatives; Loria, E.A., Ed.; TMS-AIME: Warrendale, PA, USA, 1994; pp. 345–354, doi:10.7449/1994/Superalloys_1994_345_354.
37. Zhang, F.; Levine, L.E.; Allen, A.J.; Campbell, C.E.; Lass, E.A.; Cheruvathur, S.; Stoudt, M.R.; Williams, M. E; Idell, Y. Homogenization kinetics of a nickel-based superalloy produced by powder bed fusion laser sintering. Scr. Mater. 2017, 113, 98–102, doi:10.1016/j.scriptamat.2016.12.037.
38. Sochalski-Kolbus, L.M.; Payzant, E.A.; Cornwell, P.A.; Watkins, T.R.; Babu, S.S.; Dehoff, R.R.; Lorenz, M.; Ovchinnikova, M.; Duty, C. Comparison of residual stresses in Inconel 718 simple parts made by electron beam melting and direct laser metal sintering. Metall. Mater. Trans. A 2015, 46, 1419–1432, doi:10.1007/s11661-014-2722-2.
39. Slama, C.; Servant, C.; Cizeron, G. Aging of the Inconel 718 alloy between 500 and 750 °C. J. Mater. Res. 2011, 12, 2298–2316, doi:10.1557/JMR.1997.0306.
40. Azadian, S.; Wei, L.-Y.; Warren, R. Delta phase precipitation in Inconel 718. Mater. Charact. 2004, 53, 7–16, doi:10.1016/j.matchar.2004.07.004.
41. Idell, Y.; Levine, L.E.; Allen, A.J.; Zhang, F.; Campbell, C.E.; Olson, G.B.; Gong, J.; Snyder, D.R.; Deutchman, H.Z. Unexpected δ-phase formation in additive-manufactured Ni-based superalloy. JOM 2016, 68, 950–959, doi:10.1007/s11837-015-1772-2.
42. Jouiad, M.; Marin, E.; Devarapalli, R.S.; Cormier, J.; Ravaux, F.; Le Gall, C.; Franchet, J.M. Microstructure and mechanical properties evolutions of alloy 718 during isothermal and thermal cycling over-aging. Mater. Des. 2016, 102, 284–296, doi:10.1016/j.matdes.2016.04.048.
43. Rao, G.; Sankaranarayana, M.; Balasubramaniam, S. Hot isostatic pressing technology for defence and space applications. Def. Sci. J. 2012, 62, 73–80, doi:10.14429/dsj.62.372.
44. Clark, D.; Bache, M.R.; Whittaker, M.T. Shaped metal deposition of a nickel alloy for aero engine applications. J. Mater. Process. Technol. 2008, 203, 439–448, doi:10.1016/j.jmatprotec.2007.10.051.
45. Janaki Ram, G.D.; Venugopal Reddy, A.; Prasad Rao, K.; Reddy, G.M.; Sarin Sundar, J.K. Microstructure and tensile properties of Inconel 718 pulsed Nd-YAG laser welds. J. Mater. Process. Technol. 2005, 167, 73–82, doi:10.1016/j.jmatprotec.2004.09.081.
46. Schirra, J.J.; Caless, R.H.; Hatala, R.W. The effect of laves phase on the mechanical properties of wrought and cast + HIP Inconel 718. In Superalloys 718, 625, 706 and Various. Dérivatives; Loria, E.A., Ed.; TMS-AIME: Warrendale, PA, USA, 1991; pp. 375–388, doi:10.7449/1991/Superalloys_1991_375_388.
47. Qi, H.; Azer, M.; Ritter, A. Studies of standard heat treatment effects on microstructure and mechanical properties of laser net shape manufactured Inconel 718 Metall. Mater. Trans. A 2009, 40, 2410–2422, doi:10.1007/s11661-009-9949-3.
48. Mitchell, A.; Schmalz, A.J.; Schvezov, C.; Cockroft, S. The precipitation of primary carbides in alloy 718. In Superalloys 718, 625 and Various Derivatives; Loria, E.A., Ed.; TMS-AIME: Warrendale, PA, USA, 1994; pp. 65–78.
49. Bouse, G.K. Application of a modified phase diagram to the production of cast alloy 718 components. In Superalloy 718–Metallurgy Application; Loria, E.A., Ed.; TMS-AIME: Warrendale, PA, USA, 1989; pp. 69–79.
50. Cieslak, M.J.; Knorovsky, G.A.; Headley, T.J.; Romig, A.D.J. The solidification metallurgy of alloy 718 and other Nb-containing superalloys. Superalloy 1989, 718, 59–68.
51. Murata, Y.; Morinaga, M.; Yukawa, N.; Ogawa, H.; Kato, M. Solidification structures of Inconel 718 with microalloying elements. Superalloys 1994, 718, 81–88.
52. Sjoberg, G.; Ingesten, N.G.; Carlson, R.G. Grain boundary δ-phase morphologies, carbides and notch rupture sensitivity of cast alloy 718. Superalloys 1991, 718, 603–620, doi:10.7449/1991/Superalloys_1991_603_620.
53. Lifshitz, I.M.; Slyozov, V.V. The kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Solids 1961, 19, 35–50, doi:10.1016/0022-3697(61)90054-3.
54. Oradei-Basile, A.; Radavich, J.F. A current TTT diagram for wrought alloy 718. Superalloys 1991, 718,
325–335
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top