McGarvey-Lechable, Kathleen, Hamidfar, Tabassom, Patel, David, Xu, Luhua, Plant, David V. and Bianucci, Pablo (2017) Slow light in mass-produced, dispersion-engineered photonic crystal ring resonators. Optics Express, 25 (4). pp. 3916-3926. ISSN 1094-4087
Preview |
Text (application/pdf)
11MBMcGarvey-PhCRR.pdf - Accepted Version Available under License Spectrum Terms of Access. |
Official URL: http://dx.doi.org/10.1364/OE.25.003916
Abstract
We present experimental results of photonic crystal ring resonators (PhCRRs) fabricated on the CMOS-compatible, silicon-on-insulator platform via 193-nm deep-UV lithography. Our dispersion-engineering design approach is compared to experimental results, showing very good agreement between theory and measurements. Specifically, we report a mean photonic band-edge wavelength of 1546.2 ± 5.8 nm, a 0.2% variation from our targeted band-edge wavelength of 1550 nm. Methods for the direct calculation of the experimental, discrete dispersion relation and extraction of intrinsic quality factors for a highly-dispersive resonator are discussed. A maximum intrinsic quality factor of ≈83,800 is reported, substantiating our design method and indicating that high-throughput optical lithography is a viable candidate for PhCRR fabrication. Finally, through comparison of the mean intrinsic quality and slowdown factors of the PhCRRs and standard ring resonators, we present evidence of an increase in light-matter interaction strength with simultaneous preservation of microcavity lifetimes.
Divisions: | Concordia University > Faculty of Arts and Science > Physics |
---|---|
Item Type: | Article |
Refereed: | Yes |
Authors: | McGarvey-Lechable, Kathleen and Hamidfar, Tabassom and Patel, David and Xu, Luhua and Plant, David V. and Bianucci, Pablo |
Journal or Publication: | Optics Express |
Date: | 2017 |
Funders: |
|
Digital Object Identifier (DOI): | 10.1364/OE.25.003916 |
ID Code: | 982639 |
Deposited By: | Danielle Dennie |
Deposited On: | 20 Jun 2017 19:49 |
Last Modified: | 18 Jan 2018 17:55 |
References:
1. B. Little, S. Chu, H. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).2. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
3. M. Ferrera, D. Duchesne, L. Razzari, M. Peccianti, R. Morandotti, P. Cheben, S. Janz, D.-X. Xu, B. E. Little, S. Chu, and D. J. Moss, “Low power four wave mixing in an integrated, micro-ring resonator with Q = 12 million,” Opt. Express 17, 14098 (2009).
4. Y. Liu, Y. Xuan, X. Xue, P.-H. Wang, S. Chen, A. J. Metcalf, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Investigation of mode coupling in normal-dispersion silicon nitride microresonators for Kerr frequency comb generation,” Optica 1, 137 (2014).
5. V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip-based optical frequency comb using soliton Cherenkov radiation,” Science 351, 357–360 (2016).
6. C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351, 1176–1180 (2016).
7. I.S. Grudinin and N. Yu, “Dispersion engineering of crystalline resonators via microstructuring,” Optica 3, 221–224 (2015).
8. K. Y. Yang, K. Beha, D. Cole, X. Yi, P. Del’Haye, H. Lee, J. Li, D. Oh, S. A. Diddams, S.B. Papp, and K.J. Vahala, “Broadband dispersion-engineered microresonator on a chip,” Nat. Photon. 10, 316–320 (2016).
9. K. Saha, Y. Okawachi, J. S. Levy, R. K. W. Lau, K. Luke, M. A. Foster, M. Lipson, and A. L. Gaeta, “Broadband parametric frequency comb generation with a 1-µ m pump source,” Opt. Express 20, 26935–26941 (2012).
10. M. S. McClellan, L. L. Domier, and R. C. Bailey, “Label-free virus detection using silicon photonic microring resonators,” Biosens. Bioelectron. 31, 388–392 (2012).
11. M. Sumetsky, R. S. Windeler, Y. Dulashko, and X. Fan, “Optical liquid ring resonator sensor,” Opt. Express 15, 14376 (2007).
12. C. E. Campanella, F. De Leonardis, L. Mastronardi, P. Malara, G. Gagliardi, and V. M. N. Passaro, “Investigation of refractive index sensing based on Fano resonance in fiber Bragg grating ring resonators,” Opt. Express 23, 14301–14313 (2015).
13. D. Goldring, U. Levy, and D. Mendlovic, “Highly dispersive micro-ring resonator based on one dimensional photonic crystal waveguide design and analysis,” Opt. Express 15, 3156 (2007).
14. K. McGarvey-Lechable and P. Bianucci, “Maximizing slow-light enhancement in one-dimensional photonic crystal ring resonators,” Opt. Express 22, 26032 (2014).
15. L. Thévenaz, I. Dicaire, and S. Chin, “Enhancing the light-matter interaction using slow light: towards the concept of dense light,” in “SPIE OPTO,” S. M. Shahriar and F. A. Narducci, eds. (International Society for Optics and Photonics, 2012), pp. 82731D.
16. M. Soljacić, E. Lidorikis, L. V. Hau, and J. D. Joannopoulos, “Enhancement of microcavity lifetimes using highly dispersive materials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71, 026602 (2005).
17. J. Y. Lee and P. M. Fauchet, “Slow-light dispersion in periodically patterned silicon microring resonators,” Opt. Lett. 37, 58–60 (2012).
18. G. Gao, Y. Zhang, H. Zhang, Y. Wang, Q. Huang, and J. Xia, “Air-mode photonic crystal ring resonator on silicon-on-insulator,” Sci. Rep. 6, 19999 (2016).
19. M. Settle, M. Salib, A. Michaeli, and T. F. Krauss, “Low loss silicon on insulator photonic crystal waveguides made by 193nm optical lithography,” Opt. Express 14, 2440 (2006).
20. S. Johnson and J. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173 (2001).
21. A. Y. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866 (2004).
22. E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs,” Phys. Rev. B 72, 161318 (2005).
23. T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D: Appl. Phys. 40, 2666–2670 (2007).
24. D. Urbonas, A. Balčytis, K. Vaškevičius, M. Gabalis, and R. Petruškevičius, “Air and dielectric bands photonic crystal microringresonator for refractive index sensing,” Opt. Lett. 41, 3655–3658 (2016).
Repository Staff Only: item control page