Li, Biao and Wong, Ron C.K. (2017) A mechanistic model for anisotropic thermal strain behavior of soft mudrocks. Engineering Geology, 228 . pp. 146-157. ISSN 00137952
Preview |
Text (application/pdf)
1MBli-2017.pdf - Accepted Version Available under License Spectrum Terms of Access. |
Official URL: http://dx.doi.org/10.1016/j.enggeo.2017.08.008
Abstract
Under drained heating, soft mudrocks can expand or contract depending on its mineralogy, composition, structure, stress history, and the imposed temperature. Previous research on the physics behind the thermally induced deformation behavior is limited. The impact of clay minerals on the overall anisotropic deformation behavior has not been quantitatively considered. In this study, a compositional thermal strain model is proposed to quantify the thermally induced deformation in soft mudrocks through a homogenization approach. The intrinsic fabric of soft mudrock was examined and considered in the model. Theoretically, thermally induced deformation in a soft mudrock is contributed by the expansion of solid minerals and interlayer bound water, the removal or dehydration of clay-bound water, and thermal plastic strain (grain rearrangement). The overall deformation of soft mudrocks is governed by the thermal deformation behavior of individual constituents and their interactions. The interactions among non-clay minerals and clay-water composites can be considered by applying a structural state coefficient. The proposed thermal strain model was validated by a series of experimental results using reconstituted and natural soft mudrock samples with different clay fractions. The results indicate that soft mudrocks with a structural state of clay matrix-supported are on the risk of having thermal contraction behavior which comes from clay dehydration or thermal plastic strain. The oriented fabric in soft mudrocks contributes to the anisotropy in thermal strains. The proposed thermal strain model can be applied to estimate critical parameters in phenomenon-based thermal elastic-plastic models for constitutive modeling.
Divisions: | Concordia University > Gina Cody School of Engineering and Computer Science > Building, Civil and Environmental Engineering |
---|---|
Item Type: | Article |
Refereed: | Yes |
Authors: | Li, Biao and Wong, Ron C.K. |
Journal or Publication: | Engineering Geology |
Date: | 13 October 2017 |
Digital Object Identifier (DOI): | 10.1016/j.enggeo.2017.08.008 |
Keywords: | Soft mudrock; Microstructure; Thermal strain model; Anisotropy; Mechanisms; Experimental validation |
ID Code: | 982757 |
Deposited By: | Danielle Dennie |
Deposited On: | 14 Aug 2017 20:31 |
Last Modified: | 18 Jan 2018 17:55 |
References:
H.M. Abuel-Naga, D.T. Bergado, A. Bouazza. Thermally induced volume change and excess pore water pressure of soft Bangkok clay. Eng. Geol., 89 (1) (2007), pp. 144-154, 10.1016/j.enggeo.2006.10.002M. Al-Mukhtar, N. Belanteur, D. Tessier, S.K. Vanapalli. The fabric of a clay soil under controlled mechanical and hydraulic stress states. Appl. Clay Sci., 11 (2–4) (1996), pp. 99-115, 10.1016/S0169-1317(96)00023-3
D. Barry-Macaulay, A. Bouazza, R.M. Singh, B. Wang, P.G. Ranjith. Thermal conductivity of soils and rocks from the Melbourne (Australia) region. Eng. Geol., 164 (2013), pp. 131-138, 10.1016/j.enggeo.2013.06.014
R.G. Campanella, J.K. Mitchell. Influence of temperature variations on soil behavior. J. Soil Mech. Found. Div., 94 (SM 3) (1968), pp. 709-734
S. Cariou, L. Dormieux, F. Skoczylas. An original constitutive law for Callovo-Oxfordian argillite, a two-scale double-porosity material. Appl. Clay Sci., 80–81 (0) (2013), pp. 18-30, 10.1016/j.clay.2013.05.003
P.Y. Cholach, D.R. Schmitt. Intrinsic elasticity of a textured transversely isotropic muscovite aggregate: comparisons to the seismic anisotropy of schists and shales. J. Geophys. Res. Solid Earth, 111 (B9) (2006), p. B09410, 10.1029/2005jb004158
V.A. Colten-Bradley. Role of pressure in smectite dehydration; effects on geopressure and smectite-to-illite transformation. AAPG Bull., 71 (11) (1987), pp. 1414-1427
R.J. Day-Stirrat, A.M. Schleicher, J. Schneider, P.B. Flemings, J.T. Germaine, B.A. van der Pluijm. Preferred orientation of phyllosilicates: effects of composition and stress on resedimented mudstone microfabrics. J. Struct. Geol., 33 (9) (2011), pp. 1347-1358, 10.1016/j.jsg.2011.06.007
R.J. Day-Stirrat, P.B. Flemings, Y. You, A.C. Aplin, B.A. van der Pluijm. The fabric of consolidation in Gulf of Mexico mudstones. Mar. Geol., 295 (2012), pp. 77-85, 10.1016/j.margeo.2011.12.003
C. Del Olmo, V. Fioravante, F. Gera, T. Hueckel, J.C. Mayor, R. Pellegrini. Thermomechanical properties of deep argillaceous formations. Eng. Geol., 41 (1–4) (1996), pp. 87-102, 10.1016/0013-7952(95)00048-8
K.R. Demars, R.D. Charles. Soil volume changes induced by temperature cycling. Can. Geotech. J., 19 (2) (1982), pp. 188-194, 10.1139/t82-021
B.V. Derjaguin, V.V. Karasev, E.N. Khromova. Thermal expansion of water in fine pores. Prog. Surf. Sci., 40 (1–4) (1992), pp. 391-392, 10.1016/0079-6816(92)90067-R
D.N. Dewhurst, A.C. Aplin, J.P. Sarda. Influence of clay fraction on pore-scale properties and hydraulic conductivity of experimentally compacted mudstones. J. Geophys. Res. Solid Earth, 104 (B12) (1999), pp. 29261-29274, 10.1029/1999jb900276
A. Di Donna, L. Laloui. Response of soil subjected to thermal cyclic loading: experimental and constitutive study. Eng. Geol., 190 (2015), pp. 65-76, 10.1016/j.enggeo.2015.03.003
R.L. Folk. Petrology for Sedimantary Rocks. Hemphill Publishing Company, Austin, Texas (1980)
R. Gautam. Anisotropy in deformations and hydraulic properties of Colorado shale. Department of Civil Engineering, University of Calgary, Calgary, Alberta (2004)
J.E. Gillott Some clay-related problems in engineering geology in North America Clay Miner., 21 (3) (1986), pp. 261-278, 10.1180/claymin.1986.021.3.02
J. Gonçalvès, P. Rousseau-Gueutin, G. de Marsily, P. Cosenza, S. Violette What is the significance of pore pressure in a saturated shale layer? Water Resour. Res., 46 (4) (2010), p. W04514, 10.1029/2009wr008090
T. Hueckel, G. Baldi Thermoplasticity of saturated clays: experimental constitutive study J. Geotech. Eng., 116 (12) (1990), pp. 1778-1796, 10.1061/(ASCE)0733-9410(1990)116:12(1778)
T. Hueckel, R. Pellegrini. A note on thermomechanical anisotropy of clays. Eng. Geol., 41 (1) (1996), pp. 171-180, 10.1016/0013-7952(95)00050-X
T. Hueckel, R. Pellegrini. Reactive plasticity for clays: application to a natural analog of long-term geomechanical effects of nuclear waste disposal.Eng. Geol., 64 (2) (2002), pp. 195-215, 10.1016/S0013-7952(01)00114-4
A. Hüpers, A.J. Kopf.The thermal influence on the consolidation state of underthrust sediments from the Nankai margin and its implications for excess pore pressure.Earth Planet. Sci. Lett., 286 (1–2) (2009), pp. 324-332, 10.1016/j.epsl.2009.05.047
Y. Ichikawa, A.P.S. Selvadurai. Transport Phenomena in Porous Media Aspects of Micro/Macro Behaviour. Springer, Berlin, New York (2012)
Y. Jia, H.B. Bian, G. Duveau, K. Su, J.F. Shao. Numerical modelling of in situ behaviour of the Callovo–Oxfordian argillite subjected to the thermal loading. Eng. Geol., 109 (3) (2009), pp. 262-272, 10.1016/j.enggeo.2009.08.012
U. Kuila, M. Prasad. Specific surface area and pore-size distribution in clays and shales. Geophys. Prospect., 61 (2) (2013), pp. 341-362, 10.1111/1365-2478.12028
L. Laloui, C. Cekerevac. Numerical simulation of the non-isothermal mechanical behaviour of soils. Comput. Geotech., 35 (5) (2008), pp. 729-745, 10.1016/j.compgeo.2007.11.007
B. Li. Effect of Clay Fraction on Thermal-hydro-mechanical Responses of Soft Mudrocks. Department of Civil Engineering, University of Calgary, Calgary, Alberta (2015)
B. Li, R. Wong Effect of heating in steam-based-oil-recovery process on deformation of shale: a compositional thermal strain model J. Can. Pet. Technol., 54 (1) (2015), pp. 26-35
B. Li, R.C.K. Wong Quantifying structural states of soft mudrocks
J. Geophys. Res., 121 (5) (2016), pp. 3324-3347, 10.1002/2015JB012454
B. Li, R.C.K. Wong Modeling anisotropic static elastic properties of soft mudrocks with different clay fractions Geophysics, 82 (1) (2017), pp. MR27-MR37, 10.1190/geo2015-0575.1
Y.-S. Ma, W.-Z. Chen, H.-D. Yu, Z. Gong, X.-L. Li Variation of the hydraulic conductivity of Boom Clay under various thermal-hydro-mechanical conditions Eng. Geol., 212 (2016), pp. 35-43, 10.1016/j.enggeo.2016.07.013
H.A. McKinstr Thermal expansion of clay minerals Am. Mineral., 50 (1–2) (1965), pp. 212-222
J.K. Mitchell, K. Soga Fundamentals of Soil Behavior (3rd Edition), J. Wiley & Sons, New York (2005)
M. Mohamadi, R.G. Wan Influence of structuration on the critical state friction angle: an elastoplastic description In the 49th US Rock Mechanics/Geomechanics Symposium, American Rock Mechanics Association, San Francisco, CA, USA (2015)
B. Moyano, K.T. Spikes, T.A. Johansen, N.H. Mondol Modeling compaction effects on the elastic properties of clay-water composites Geophysics, 77 (5) (2012), pp. D171-D183, 10.1190/geo2011-0426.1
B.R. Munson, D.F. Young, T.H. Okiishi Fundamentals of Fluid Mechanics Wiley, New York (2002)
H.H. Murray Applied Clay Mineralogy: Occurrences, Processing, and Application of Kaolins, Bentonites, Palygorskite-sepiolite, and Common Clays Elsevier, Amsterdam; Boston (2007)
S.A. Parry, M.E. Hodson, E.H. Oelkers, S.J. Kemp Is silt the most influential soil grain size fraction? Appl. Geochem., 26 (Supplement(0)) (2011), pp. S119-S122, 10.1016/j.apgeochem.2011.03.045
E.C. Robertson Thermal Properties of Rocks U.S. Dept. of the Interior, Geological Survey (1988)
J.C. Santamarina, K.A. Klein, Y.H. Wang, E. Prencke Specific surface: determination and relevance Can. Geotech. J., 39 (1) (2002), pp. 233-241, 10.1139/t01-077
J. Schneider Compression and Permeability Behavior of Natural Mudstones Department of Geological Sciences, The University of Texas at Austin, Austin, Texas (2011)
B.J. Skinner Thermal expansion S.P. Clark Jr. (Ed.), Handbook of Physical Constants (Revised Edition), 97, The Geological Society of America, Inc. (1966), pp. 75-96
N. Sultan, P. Delage, Y.J. Cui Temperature effects on the volume change behaviour of boom clay Eng. Geol., 64 (2–3) (2002), pp. 135-145, 10.1016/s0013-7952(01)00143-0
O. Vidal, B. Dubacq Thermodynamic modelling of clay dehydration, stability and compositional evolution with temperature, pressure and H2O activity Geochim. Cosmochim. Acta, 73 (21) (2009), pp. 6544-6564, 10.1016/j.gca.2009.07.035
R.C.K. Wong, E.Z. Wang Three-dimensional anisotropic swelling model for clay shale - a fabric approach Int. J. Rock Mech. Min. Sci., 34 (2) (1997), pp. 187-198, 10.1016/s0148-9062(96)00057-5
R.C.K. Wong, D.R. Schmitt, D. Collis, R. Gautam Inherent transversely isotropic elastic parameters of over-consolidated shale measured by ultrasonic waves and their comparison with static and acoustic in situ log measurements J. Geophys. Eng., 5 (1) (2008), pp. 103-117, 10.1088/1742-2132/5/1/011
D.M. Wood Soil Behaviour and Critical State Soil Mechanics Cambridge University Press (1991)
Y.L. Yang, A.C. Aplin Influence of lithology and compaction on the pore size distribution and modelled permeability of some mudstones from the Norwegian margin Mar. Pet. Geol., 15 (2) (1998), pp. 163-175, 10.1016/s0264-8172(98)00008-7
C.L. Zhang, K. Wieczorek, M.L. Xie Swelling experiments on mudstones J. Rock Mech. Geotech. Eng., 2 (1) (2012), pp. 44-51, 10.3724/SP.J.1235.2010.00044
Y.S. Zhao, Z.J. Wan, Z.J. Feng, Z.H. Xu, W.G. Liang Evolution of mechanical properties of granite at high temperature and high pressure Geomech. Geophys. Geo-Energy Geo-Res., 3 (2) (2017), pp. 199-210, 10.1007/s40948-017-0052-8
Repository Staff Only: item control page