Login | Register

Diindolylmethane and its halogenated derivatives induce protective autophagy in human prostate cancer cells via induction of the oncogenic protein AEG-1 and activation of AMP-dependent kinase (AMPK)


Diindolylmethane and its halogenated derivatives induce protective autophagy in human prostate cancer cells via induction of the oncogenic protein AEG-1 and activation of AMP-dependent kinase (AMPK)

Draz, Hossam, Goldberg, Alexander A., Titorenko, Vladimir I. ORCID: https://orcid.org/0000-0001-5819-7545, Guns, Emma, Safe, Stephen H. and Sanderson, J. Thomas (2017) Diindolylmethane and its halogenated derivatives induce protective autophagy in human prostate cancer cells via induction of the oncogenic protein AEG-1 and activation of AMP-dependent kinase (AMPK). Cellular Signalling . ISSN 08986568 (In Press)

[thumbnail of Titorenko-CellularSignalling-2017.pdf]
Text (application/pdf)
Titorenko-CellularSignalling-2017.pdf - Accepted Version
Available under License Spectrum Terms of Access.

Official URL: http://dx.doi.org/10.1016/j.cellsig.2017.09.006


3,3′-Diindolylmethane (DIM) and its synthetic halogenated derivatives 4,4′-Br2- and 7,7′-Cl2DIM (ring-DIMs) have recently been shown to induce protective autophagy in human prostate cancer cells. The mechanisms by which DIM and ring-DIMs induce autophagy have not been elucidated. As DIM is a mitochondrial ATP-synthase inhibitor, we hypothesized that DIM and ring-DIMs induce autophagy via alteration of intracellular AMP/ATP ratios and activation of AMPK signaling in prostate cancer cells. We found that DIM and ring-DIMs induced autophagy was accompanied by increased autophagic vacuole formation and conversion of LC3BI to LC3BII in LNCaP and C42B human prostate cancer cells. DIM and ring-DIMs also induced AMP-activated protein kinase (AMPK), ULK-1 (unc-51-like autophagy activating kinase 1; Atg1) and acetyl-CoA carboxylase (ACC) phosphorylation in a time-dependent manner. DIM and the ring-DIMs time-dependently induced the oncogenic protein astrocyte-elevated gene 1 (AEG-1) in LNCaP and C42B cells. Downregulation of AEG-1 or AMPK inhibited DIM- and ring-DIM-induced autophagy. Pretreatment with ULK1 inhibitor MRT 67307 or siRNAs targeting either AEG-1 or AMPK potentiated the cytotoxicity of DIM and ring-DIMs. Interestingly, downregulation of AEG-1 induced senescence in cells treated with overtly cytotoxic concentrations of DIM or ring-DIMs and inhibited the onset of apoptosis in response to these compounds. In summary, we have identified a novel mechanism for DIM- and ring-DIM-induced protective autophagy, via induction of AEG-1 and subsequent activation of AMPK. Our findings could facilitate the development of novel drug therapies for prostate cancer that include selective autophagy inhibitors as adjuvants.

Divisions:Concordia University > Faculty of Arts and Science > Biology
Item Type:Article
Authors:Draz, Hossam and Goldberg, Alexander A. and Titorenko, Vladimir I. and Guns, Emma and Safe, Stephen H. and Sanderson, J. Thomas
Journal or Publication:Cellular Signalling
Date:18 September 2017
  • Canadian Institutes of Health Research (CIHR grant no. MOP-115019)
  • Fonds de Recherche du Québec - Santé (FRQS)
Digital Object Identifier (DOI):10.1016/j.cellsig.2017.09.006
Keywords:Prostate cancer; LNCaP; C42B; Autophagy; AMPK; AEG-1
ID Code:983075
Deposited By: Danielle Dennie
Deposited On:22 Sep 2017 13:18
Last Modified:28 May 2019 19:08


J. Ferlay, I. Soerjomataram, R. Dikshit, S. Eser, C. Mathers, M. Rebelo, D.M. Parkin, D. Forman, F. Bray Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012 Int. J. Cancer, 136 (5) (2015), pp. E359-86

R.L. Siegel, K.D. Miller, A. Jemal Cancer statistics, 2016 CA Cancer J. Clin., 66 (1) (2016), pp. 7-30

D.K. Wysowski, J.P. Freiman, J.B. Tourtelot, M.L. Horton 3rd Fatal and nonfatal hepatotoxicity associated with flutamide Ann. Intern. Med., 118 (11) (1993), pp. 860-864

D.G. McLeod Tolerability of nonsteroidal antiandrogens in the treatment of advanced prostate cancer Oncologist, 2 (1) (1997), pp. 18-27

D.G. McLeod, E.D. Crawford, E.P. DeAntoni Combined androgen blockade: the gold standard for metastatic prostate cancer Eur. Urol., 32 (Suppl. 3) (1997), pp. 70-77

L.F. Bjeldanes, J.Y. Kim, K.R. Grose, J.C. Bartholomew, C.A. Bradfield Aromatic hydrocarbon responsiveness-receptor agonists generated from indole-3-carbinol in vitro and in vivo: comparisons with 2,3,7,8-tetrachlorodibenzo-p-dioxin Proc. Natl. Acad. Sci. U. S. A., 88 (21) (1991), pp. 9543-9547

K. Abdelbaqi, N. Lack, E.T. Guns, L. Kotha, S. Safe, J.T. Sanderson Antiandrogenic and growth inhibitory effects of ring-substituted analogs of 3,3′-diindolylmethane (ring-DIMs) in hormone-responsive LNCaP human prostate cancer cells Prostate, 71 (13) (2011), pp. 1401-1412

A.A. Goldberg, V.I. Titorenko, A. Beach, K. Abdelbaqi, S. Safe, J.T. Sanderson Ring-substituted analogs of 3,3′-diindolylmethane (DIM) induce apoptosis and necrosis in androgen-dependent and independent prostate cancer cells Investig. New Drugs, 32 (1) (2014), pp. 25-36

A.A. Goldberg, H. Draz, D. Montes-Grajales, J. Olivero-Verbel, S.H. Safe, J.T. Sanderson 3,3′-Diindolylmethane (DIM) and its ring-substituted halogenated analogs (ring-DIMs) induce differential mechanisms of survival and death in androgen-dependent and -independent prostate cancer cells Genes Cancer, 6 (5–6) (2015), pp. 265-280

C.W. Wang, D.J. Klionsky The molecular mechanism of autophagy Mol. Med., 9 (3–4) (2003), pp. 65-76

D. Glick, S. Barth, K.F. Macleod Autophagy: cellular and molecular mechanisms J. Pathol., 221 (1) (2010), pp. 3-12

E. White The role for autophagy in cancer J. Clin. Invest., 125 (1) (2015), pp. 42-46

S.Y. Yang, M.C. Winslet Dual role of autophagy in colon cancer cell survival Ann. Surg. Oncol., 18 (Suppl. 3) (2011), p. S239

C.B. Blackadar Historical review of the causes of cancer World J Clin Oncol., 7 (1) (2016), pp. 54-86

N. Mizushima, T. Yoshimori, Y. Ohsumi The role of Atg proteins in autophagosome formation Annu. Rev. Cell Dev. Biol., 27 (2011), pp. 107-132

T.E. Hansen, T. Johansen Following autophagy step by step
BMC Biol., 9 (2011), p. 39

J. Kim, M. Kundu, B. Viollet, K.L. Guan AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1 Nat. Cell Biol., 13 (2) (2011), pp. 132-141

G. Hu, Y. Wei, Y. Kang The multifaceted role of MTDH/AEG-1 in cancer progression Clin. Cancer Res., 15 (18) (2009), pp. 5615-5620

X. Shi, X. Wang The role of MTDH/AEG-1 in the progression of cancer Int. J. Clin. Exp. Med., 8 (4) (2015), pp. 4795-4807

S.K. Bhutia, T.P. Kegelman, S.K. Das, B. Azab, Z.Z. Su, S.G. Lee, D. Sarkar, P.B. Fisher Astrocyte elevated gene-1 induces protective autophagy Proc. Natl. Acad. Sci. U. S. A., 107 (51) (2010), pp. 22243-22248

S.K. Bhutia, T.P. Kegelman, S.K. Das, B. Azab, Z.Z. Su, S.G. Lee, D. Sarkar, P.B. Fisher Astrocyte elevated gene-1 activates AMPK in response to cellular metabolic stress and promotes protective autophagy Autophagy, 7 (5) (2011), pp. 547-548

B.K. Yoo, D. Chen, Z.Z. Su, R. Gredler, J. Yoo, K. Shah, P.B. Fisher, D. Sarkar Molecular mechanism of chemoresistance by astrocyte elevated gene-1 Cancer Res., 70 (8) (2010), pp. 3249-3258

J. Srivastava, A. Siddiq, L. Emdad, P.K. Santhekadur, D. Chen, R. Gredler, X.N. Shen, C.L. Robertson, C.I. Dumur, P.B. Hylemon, N.D. Mukhopadhyay, D. Bhere, K. Shah, R. Ahmad, S. Giashuddin, J. Stafflinger, M.A. Subler, J.J. Windle, P.B. Fisher, D. Sarkar Astrocyte elevated gene-1 promotes hepatocarcinogenesis: novel
insights from a mouse model Hepatology, 56 (5) (2012), pp. 1782-1791

Y. Gong, H. Sohn, L. Xue, G.L. Firestone, L.F. Bjeldanes 3,3′-Diindolylmethane is a novel mitochondrial H(+)-ATP synthase inhibitor that can induce p21(Cip1/Waf1) expression by induction of oxidative stress in human breast cancer cells Cancer Res., 66 (9) (2006), pp. 4880-4887

D. Chen, S. Banerjee, Q.C. Cui, D. Kong, F.H. Sarkar, Q.P. Dou Activation of AMP-activated protein kinase by 3,3′-diindolylmethane (DIM) is associated with human prostate cancer cell death in vitro and in vivo PLoS One, 7 (10) (2012), Article e47186

P.K. Kandala, S.K. Srivastava Regulation of macroautophagy in ovarian cancer cells in vitro and in vivo by controlling glucose regulatory protein 78 and AMPK Oncotarget, 3 (4) (2012), pp. 435-449

M. Zou, W. Zhu, L. Wang, L. Shi, R. Gao, Y. Ou, X. Chen, Z. Wang, A. Jiang, K. Liu, M. Xiao, P. Ni, D. Wu, W. He, G. Sun, P. Li, S. Zhai, X. Wang, G. Hu AEG-1/MTDH-activated autophagy enhances human malignant glioma susceptibility to TGF-beta1-triggered epithelial-mesenchymal transition Oncotarget, 7 (11) (2016), pp. 13122-13138

X. Liu, D. Wang, H. Liu, Y. Feng, T. Zhu, L. Zhang, B. Zhu, Y. Zhang Knockdown of astrocyte elevated gene-1 (AEG-1) in cervical cancer cells decreases their invasiveness, epithelial to mesenchymal transition, and chemoresistance Cell Cycle, 13 (11) (2014), pp. 1702-1707

N. Kikuno, H. Shiina, S. Urakami, K. Kawamoto, H. Hirata, Y. Tanaka, R.F. Place, D. Pookot, S. Majid, M. Igawa, R. Dahiya Knockdown of astrocyte-elevated gene-1 inhibits prostate cancer progression through upregulation of FOXO3a activity Oncogene, 26 (55) (2007), pp. 7647-7655

H.J. Lee, D.B. Jung, E.J. Sohn, H.H. Kim, M.N. Park, J.H. Lew, S.G. Lee, B. Kim, S.H. Kim Inhibition of hypoxia inducible factor alpha and astrocyte-elevated gene-1 mediates cryptotanshinone exerted antitumor activity in hypoxic PC-3 cells Evidence-based Complementary and Alternative Medicine: eCAM, 2012 (2012), p. 390957

X. Ge, S. Yannai, G. Rennert, N. Gruener, F.A. Fares 3,3′-Diindolylmethane induces apoptosis in human cancer cells Biochem. Biophys. Res. Commun., 228 (1) (1996), pp. 153-158

M. Nachshon-Kedmi, F.A. Fares, S. Yannai Therapeutic activity of 3,3′-diindolylmethane on prostate cancer in an in vivo model Prostate, 61 (2) (2004), pp. 153-160

M. Nachshon-Kedmi, S. Yannai, F.A. Fares Induction of apoptosis in human prostate cancer cell line, PC3, by 3,3′-diindolylmethane through the mitochondrial pathway Br. J. Cancer, 91 (7) (2004), pp. 1358-1363

J.P. Sedelaar, J.T. Isaacs Tissue culture media supplemented with 10% fetal calf serum contains a castrate level of testosterone Prostate, 69 (16) (2009), pp. 1724-1729

G.P. Dimri What has senescence got to do with cancer? Cancer Cell, 7 (6) (2005), pp. 505-512

M. Lee, J.S. Lee Exploiting tumor cell senescence in anticancer therapy BMB Rep., 47 (2) (2014), pp. 51-59

J.A. Ewald, J.A. Desotelle, G. Wilding, D.F. Jarrard Therapy-induced senescence in cancer J. Natl. Cancer Inst., 102 (20) (2010), pp. 1536-1546

A. Gibadulinova, M. Pastorek, P. Filipcik, P. Radvak, L. Csaderova, B. Vojtesek, S. Pastorekova Cancer-associated S100P protein binds and inactivates p53, permits therapy-induced senescence and supports chemoresistance Oncotarget, 7 (16) (2016), pp. 22508-22522

J. Tato-Costa, S. Casimiro, T. Pacheco, R. Pires, A. Fernandes, I. Alho, P. Pereira, P. Costa, H.B. Castelo, J. Ferreira, L. Costa Therapy-induced cellular senescence induces epithelial-to-mesenchymal transition and increases invasiveness in rectal cancer Clin. Colorectal Cancer, 15 (2) (2016)
(170-178 e3)
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top