Shetabivash, H. and Dolatabadi, Ali ORCID: https://orcid.org/0000-0001-6416-351X (2017) Numerical investigation of air mediated droplet bouncing on flat surfaces. AIP Advances, 7 (9). 095003. ISSN 2158-3226
Preview |
Text (application/pdf)
8MBDolatabadi-AIP-Advances-2017.pdf - Published Version Available under License Creative Commons Attribution. |
Official URL: http://dx.doi.org/10.1063/1.4993837
Abstract
A liquid droplet can bounce off a flat substrate independent of surface wettability if the impact occurs at low velocities, i.e., We of less than seven. In this case, the droplet spreads on a sub-micrometer air layer and rebounds subsequently without any direct contact with the surface. We have numerically investigated the process of air layer formation beneath the droplet. The numerical simulations are validated using experimental results available in the literature based on morphology of the droplet interface and thickness of the air layer. Numerical results revealed that the formation of a high pressure zone at the center of impact deforms the droplet to a kink shape at the moment of impact. The deformation leads to displacement of high pressure zone from center to kink edge of the droplet interface. Further investigation of pressure and velocity of air beneath the droplet divulged that high pressure region at the kink edge suppresses air flow at the inner region while accelerating flow at the outer region. In addition, it is demonstrated that fluid flow at the kink edge where droplet interface has the minimum distance from the substrate resembles Couette flow. It is demonstrated that the deformation of droplet along with displacement of high pressure region from the center to kink edge are responsible for stabilizing the air layer beneath the droplet and consequently spreading and receding of droplet over a thin air cushion.
Divisions: | Concordia University > Gina Cody School of Engineering and Computer Science > Mechanical, Industrial and Aerospace Engineering |
---|---|
Item Type: | Article |
Refereed: | Yes |
Authors: | Shetabivash, H. and Dolatabadi, Ali |
Journal or Publication: | AIP Advances |
Date: | September 2017 |
Funders: |
|
Digital Object Identifier (DOI): | 10.1063/1.4993837 |
ID Code: | 983118 |
Deposited By: | Danielle Dennie |
Deposited On: | 17 Oct 2017 13:49 |
Last Modified: | 18 Jan 2018 17:56 |
References:
1. A. M. Worthington, A study of splashes (Longmans, Green, and Company, 1908).2. Y. Couder, E. Fort, C.-H. Gautier, and A. Boudaoud, Physical Review Letters 94, 177801 (2005). https://doi.org/10.1103/physrevlett.94.177801
3. J. W. Bush, Proceedings of the National Academy of Sciences 107, 17455 (2010). https://doi.org/10.1073/pnas.1012399107
4. G. E. Charles and S. G. Mason, Journal of Colloid Science 15, 236 (1960). https://doi.org/10.1016/0095-8522(60)90026-x
5. X. Chen, S. Mandre, and J. J. Feng, Physics of Fluids (1994-present) 18, 051705 (2006). https://doi.org/10.1063/1.2201470
6. G. A. Bach, D. L. Koch, and A. Gopinath, Journal of Fluid Mechanics 518, 157 (2004). https://doi.org/10.1017/s0022112004000928
7. T. Gilet and J. W. Bush, Journal of Fluid Mechanics 625, 167 (2009). https://doi.org/10.1017/s0022112008005442
8. C. Josserand and S. Thoroddsen, Annual Review of Fluid Mechanics 48, 365 (2016). https://doi.org/10.1146/annurev-fluid-122414-034401
9. S. Chandra and C. Avedisian, in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, Vol. 432 (The Royal Society, 1991) pp. 13–41.
10. H. C. Pumphrey and P. A. Elmore, Journal of Fluid Mechanics 220, 539 (1990). https://doi.org/10.1017/s0022112090003378
11. V. Mehdi-Nejad, J. Mostaghimi, and S. Chandra, Physics of Fluids (1994-present) 15, 173 (2003). https://doi.org/10.1063/1.1527044
12. S. Mandre, M. Mani, and M. P. Brenner, Physical Review Letters 102, 134502 (2009). https://doi.org/10.1103/physrevlett.102.134502
13. J. Kolinski, L. Mahadevan, and S. Rubinstein, EPL (Europhysics Letters) 108, 24001 (2014). https://doi.org/10.1209/0295-5075/108/24001
14. J. de Ruiter, R. Lagraauw, D. van den Ende, and F. Mugele, Nature Physics 11, 48 (2014). https://doi.org/10.1038/nphys3145
15. J. de Ruiter, F. Mugele, and D. van den Ende, Physics of Fluids (1994-present) 27, 012104 (2015). https://doi.org/10.1063/1.4906114
16. J. de Ruiter, D. van den Ende, and F. Mugele, Physics of Fluids (1994-present) 27, 012105 (2015). https://doi.org/10.1063/1.4906115
17. C. W. Hirt and B. D. Nichols, Journal of Computational Physics 39, 201 (1981). https://doi.org/10.1016/0021-9991(81)90145-5
18. J. Brackbill, D. B. Kothe, and C. Zemach, Journal of Computational Physics 100, 335 (1992). https://doi.org/10.1016/0021-9991(92)90240-y
19. S. Popinet, Journal of Computational Physics 190, 572 (2003). https://doi.org/10.1016/s0021-9991(03)00298-5
20. R. Scardovelli and S. Zaleski, Annual Review of Fluid Mechanics 31, 567 (1999). https://doi.org/10.1146/annurev.fluid.31.1.567
21. M. D. Torrey, L. D. Cloutman, R. C. Mjolsness, and C. Hirt, “Nasa-vof2d: a computer program for incompressible flows with free surfaces,” Tech. Rep. (Los Alamos National Lab., NM (USA), 1985).
22. A. J. Chorin, Mathematics of Computation 22, 745 (1968). https://doi.org/10.2307/2004575
23. S. Popinet, Journal of Computational Physics 228, 5838 (2009). https://doi.org/10.1016/j.jcp.2009.04.042
Repository Staff Only: item control page