Liczner, Christopher, Grenier, Vincent and Wilds, Christopher J. (2017) Reversible Diselenide Cross-links are Formed Between Oligonucleotides Containing 2’-Deoxy-6-selenoinosine. Tetrahedron Letters . ISSN 00404039 (In Press)
Preview |
Text (application/pdf)
699kBwilds-tetrahedron-letters-2017.pdf - Accepted Version Available under License Spectrum Terms of Access. |
Official URL: http://dx.doi.org/10.1016/j.tetlet.2017.11.044
Abstract
We have synthesized and characterized a phosphoramidite derivative of 2’-deoxy-6-selenoinosine (d6SeI) and incorporated this modification into an oligonucleotide by solid-phase synthesis. During cleavage from the solid-support and deprotection, spontaneous dimerization of this oligonucleotide occurs via formation of a diselenide cross-link between the modified nucleobases. This cross-link can be readily reduced to restore the single-stranded oligonucleotide. UV thermal denaturation and circular dichroism spectroscopy of duplexes with d6SeI paired against all four native nucleobases revealed minor differences in stability and structure relative to 2’-deoxyinosine. This selenium containing nucleobase modification may be useful for applications in DNA nanomaterials and X-ray crystallography.
Divisions: | Concordia University > Faculty of Arts and Science > Chemistry and Biochemistry |
---|---|
Item Type: | Article |
Refereed: | Yes |
Authors: | Liczner, Christopher and Grenier, Vincent and Wilds, Christopher J. |
Journal or Publication: | Tetrahedron Letters |
Date: | 21 November 2017 |
Funders: |
|
Digital Object Identifier (DOI): | 10.1016/j.tetlet.2017.11.044 |
Keywords: | Chemically modified oligonucleotides; Selenium; 2’-deoxyinosine; X-ray crystallography; DNA cross-links |
ID Code: | 983223 |
Deposited By: | Danielle Dennie |
Deposited On: | 22 Nov 2017 19:16 |
Last Modified: | 20 Nov 2018 01:00 |
References:
L. Lin, J. Sheng, Z. Huang Chem. Soc. Rev., 40 (2011), pp. 4591–4602C.J. Wilds, R. Pattanayek, C. Pan, Z. Wawrzak, M. Egli J. Am. Chem. Soc., 124 (2002), pp. 14910–14916
Q. Du, N. Carrasco, M. Teplova, C.J. Wilds, M. Egli, Z. Huang J. Am. Chem. Soc., 124 (2002), pp. 24–25
J.K. Watts, B.D. Johnston, K. Jayakanthan, A.S. Wahba, B.M. Pinto, M.J. Damha J. Am. Chem. Soc., 130 (2008), pp. 8578–8579
N. Carrasco, D. Ginsburg, Q. Du, Z. Huang Nucleosides. Nucleotides Nucleic Acids., 20 (2001), pp. 1723–1734
J. Salon, J. Sheng, J. Jiang, G. Chen, J. Caton-Williams, Z. Huang J. Am. Chem. Soc., 129 (2007), pp. 4862–4863
J. Salon, J. Jiang, J. Sheng, O.O. Gerlits, Z. Huang Nucleic Acids Res., 36 (2008), pp. 7009–7018
R. Abdur, O.O. Gerlits, J. Gan, et al. Acta Crystallogr. Sect. D Biol. Crystallogr., 70 (2014), pp. 354–361
F.H. Martin, M.M. Castro, F. Aboul-ela, I. Tinoco Nucleic Acids Res., 13 (1985), pp. 8927–8938
R.S. Coleman, J.C. Arthur, J.L. McCary Tetrahedron., 53 (1997), pp. 11191–11202
F. Seela, Y. Chen Nucleic Acids Res., 23 (1995), pp. 2499–2505
S. Bae, M.K. Lakshman J. Am. Chem. Soc., 129 (2007), pp. 782–789
G. Logan, C. Igunbor, G.-X. Chen, et al. Synlett., 2006 (2006), pp. 1554–1558
Sheng, J.; Huang, Z. Curr. Protoc. Nucleic Acid Chem. 2008, 32, 1.19.1-1.19.13.
G. Sun, A. Noronha, C. Wilds Tetrahedron., 68 (2012), pp. 7787–7793
Milton, J.; Connolly, B. a.; Nikiforov, T. T.; Cosstick, R. J. Chem. Soc. Chem. Commun. 1993, 0, 779–780.
R.S. Coleman, J.L. McCary, R.J. Perez Tetrahedron., 55 (1999), pp. 12009–12022
G. Markus J. Biol. Chem., 239 (1964), pp. 4163–4170
M. Teplova, C.J. Wilds, Z. Wawrzak, et al. Biochimie., 84 (2002), pp. 849–858
J. Beld, K.J. Woycechowsky, D. Hilvert Biochemistry., 46 (2007), pp. 5382–5390
K.H. Gowd, V. Yarotskyy, K.S. Elmslie, J.J. Skalicky, B.M. Olivera, G. Bulaj Biochemistry., 49 (2010), pp. 2741–2752
G. Cheng, Y. He, L. Xie, et al. Int. J. Nanomedicine., 7 (2012), pp. 3991–4006
F.Q. Schafer, G.R. Buettner Free Radic Biol Med., 30 (2001), pp. 1191–1212
Repository Staff Only: item control page