Login | Register

Influence of Electric Fields and Conductivity on Pollen Tube Growth assessed via Electrical Lab-on-Chip


Influence of Electric Fields and Conductivity on Pollen Tube Growth assessed via Electrical Lab-on-Chip

Agudelo, Carlos, Packirisamy, Muthukumaran ORCID: https://orcid.org/0000-0002-1769-6986 and Geitmann, Anja (2016) Influence of Electric Fields and Conductivity on Pollen Tube Growth assessed via Electrical Lab-on-Chip. Scientific Reports, 6 (19812). pp. 1-15. ISSN 2045-2322

[thumbnail of packirisamy-scientific-reports-2016.pdf]
Text (application/pdf)
packirisamy-scientific-reports-2016.pdf - Published Version
Available under License Spectrum Terms of Access.

Official URL: http://dx.doi.org/10.1038/srep19812


Pollen tubes are polarly growing plant cells that are able to rapidly respond to a combination of chemical, mechanical, and electrical cues. This behavioural feature allows them to invade the flower pistil and deliver the sperm cells in highly targeted manner to receptive ovules in order to accomplish fertilization. How signals are perceived and processed in the pollen tube is still poorly understood. Evidence for electrical guidance in particular is vague and highly contradictory. To generate reproducible experimental conditions for the investigation of the effect of electric fields on pollen tube growth we developed an Electrical Lab-on-Chip (ELoC). Pollen from the species Camellia displayed differential sensitivity to electric fields depending on whether the entire cell or only its growing tip was exposed. The response to DC fields was dramatically higher than that to AC fields of the same strength. However, AC fields were found to restore and even promote pollen growth. Surprisingly, the pollen tube response correlated with the conductivity of the growth medium under different AC frequencies—consistent with the notion that the effect of the field on pollen tube growth may be mediated via its effect on the motion of ions.

Divisions:Concordia University > Gina Cody School of Engineering and Computer Science > Mechanical, Industrial and Aerospace Engineering
Item Type:Article
Authors:Agudelo, Carlos and Packirisamy, Muthukumaran and Geitmann, Anja
Journal or Publication:Scientific Reports
Date:25 January 2016
  • Fonds Québécois de la Recherche sur la Nature et les Technologies (FQRNT)
Digital Object Identifier (DOI):10.1038/srep19812
Keywords:Cell growth; Tropism
ID Code:983234
Deposited By: Danielle Dennie
Deposited On:24 Nov 2017 21:40
Last Modified:18 Jan 2018 17:56


McCaig, C. D., Rajnicek, A. M., Song, B. & Zhao, M. Controlling cell behavior electrically: current views and future potential. Physiol. Rev. 85, 943–978 (2005).

Jaffe, L. F. & Nuccitelli, R. Electrical controls of development. Annu. Rev. Biophys. Bioeng. 6, 445–476 (1977).

Li, J. & Lin, F. Microfluidic devices for studying chemotaxis and electrotaxis. Trends Cell Biol. 21, 489–497 (2011).

Campetelli, A., Bonazzi, D. & Minc, N. Electrochemical regulation of cell polarity and the cytoskeleton. Cytoskeleton. 69, 601–612 (2012).

Palanivelu, R. & Preuss, D. Pollen tube targeting and axon guidance: parallels in tip growth mechanisms. Trends Cell Biol. 10, 517–524 (2000).

Sanati Nezhad, A. & Geitmann, A. The cellular mechanics of an invasive lifestyle. J. Exp. Bot. 64, 4709–4728 (2013).

Malhó, R. Pollen tube guidance–the long and winding road. Sex. Plant Reprod. 11, 242–244 (1998).

Geitmann, A. & Palanivelu, R. Fertilization requires communication: signal generation and perception during pollen tube guidance. Floric. Ornam. Biotechnol. 1, 77–89 (2007).

Malhó, R. in The Pollen Tube: a cellular and molecular perspective (Springer-Verlag: Berlin Heidelberg,) (2006).

Mascarenhas, J. P. & Machlis, L. Chemotropic response of the pollen of Antirrhinum majus to calcium. Plant Physiol. 39, 70–77 (1964).

Lush, W. M. Whither chemotropism and pollen tube guidance? Trends Plant Sci. 4, 413–418 (1999).

Cheung, A. Y., Wang, H. & Wu, H. M. A floral transmitting tissue-specific glycoprotein attracts pollen tubes and stimulates their growth. Cell. 82, 383–393 (1995).

Prado, A. M., Porterfield, D. M. & Feijó, J. A. Nitric oxide is involved in growth regulation and re-orientation of pollen tubes. Development. 131, 2707–2714 (2004).

Okuda, S. & Higashiyama, T. Pollen tube guidance by attractant molecules: LUREs. Cell Struct. Funct. 35, 45–52 (2010).

Chebli, Y. & Geitmann, A. Mechanical principles governing pollen tube growth. Funct. Plant Sci. Biotechnol. 1, 232–245 (2007).

Robinson, K. R. & Messerli, M. A. Left/right, up/down: the role of endogenous electrical fields as directional signals in development, repair and invasion. BioEssays. 25, 759–766 (2003).

Spanjers, A. W. Bioelectric potential changes in the style of Lilium longiflorum Thumb. after self- and cross-pollination of the stigma. Planta. 153, 1–5 (1981).

Stahlberg, R. Historical overview on plant neurobiology . Plant Signaling and Behavior. 1, 6–8 (2006).

Weisenseel, M. H., Nuccitelli, R. & Jaffe, L. F. Large electrical currents traverse growing pollen tubes. J. Cell Biol. 66, 556–567 (1975).

Nakamura, N., Fukushima, A., Iwayama, H. & Suzuki, H. Electrotropism of pollen tubes of camellia and other plants. Sex. Plant Reprod. 4, 138–143 (1991).

Wulff, H. D. Galvanotropismus bei Pollenschläuchen. Planta. 24, 602–608 (1935).

Wang, C., Rathore, K. S. & Robinson, K. R. The responses of pollen to applied electrical fields. Dev. Biol. 136, 405–410 (1989).

Marsh, G. & Beams, H. W. The orientation of pollen tubes of Vinca in the electric current. J. Cell Comp. Physiol. 25, 195–204 (1945).

Zeijlemaker, F. C. J. Growth of pollen tubes in vitro and their reaction on potential differences. Acta Bot. Neerlandica. 5, 179–186 (1956).

Sperber, D. Das Wachstum pflanzlicher Zellen und Organe im magnetischen und elektrischen Feld (Hartung-Gorre, 1984).

Malhó, R., Feijó, J. A. & Pais, M. S. S. Effect of electrical fields and external ionic currents on pollen-tube orientation. Sex. Plant Reprod. 5, 57–63 (1992).

Erickson, C. A. & Nuccitelli, R. Embryonic fibroblast motility and orientation can be influenced by physiological electric fields. J. Cell Biol. 98, 296–307 (1984).

Onuma, E. K. & Hui, S.-W. Electric field-directed cell shape changes, displacement, and cytoskeletal reorganization are calcium dependent. J. Cell Biol. 106, 2067–2075 (1988).

McCaig, C. D. Dynamic aspects of amphibian neurite growth and the effects of an applied electric field. J. Physiol. 375, 55–69 (1986).

Alexander, J. K., Fuss, B. & Colello, R. J. Electric field-induced astrocyte alignment directs neurite outgrowth. Neuron Glia Biol. 2, 93–103 (2006).

McGillivray, A. M. & Gow, N. A. R. Applied electrical fields polarize the growth of mycelial fungi. J. Gen. Microbiol. 132, 2515–2525 (1986).

Crombie, C., Gow, N. A. & Gooday, G. W. Influence of applied electrical fields on yeast and hyphal growth of Candida albicans. J. Gen. Microbiol. 136, 311–317 (1990).

Ishikawa, H. & Evans, M. L. Electrotropism of maize roots role of the root cap and relationship to gravitropism. Plant Physiol. 94, 913–918 (1990).

Stenz, H.-G. & Weisenseel, M. H. Electrotropism of maize (Zea mays L.) roots. Plant Physiol. 101, 1107–1111 (1993).

Chen, T.-H. & Jaffe, L. F. Forced calcium entry and polarized growth of Funaria spores. Planta. 144, 401–406 (1979).

Peng, H. B. & Jaffe, L. F. Polarization of fucoid eggs by steady electrical fields. Dev. Biol. 53, 277–284 (1976).

Robinson, K. R. The responses of cells to electrical fields: a review. J. Cell Biol. 101, 2023–2027 (1985).

Agudelo, C. G., Sanati Nezhad, A., Ghanbari, M., Packirisamy, M. & Geitmann, A. A microfluidic platform for the investigation of elongation growth in pollen tubes. J. Micromechanics Microengineering. 22, doi: 10.1088/0960-1317/22/11/115009 (2012).

Sanati Nezhad, A., Naghavi, M., Packirisamy, M., Bhat, R. & Geitmann, A. Quantification of cellular penetrative forces using lab-on-a-chip technology and finite element modeling. Proc. Natl. Acad. Sci. 110, 8093–8098 (2013).

Sanati Nezhad, A., Naghavi, M., Packirisamy, M., Bhat, R. & Geitmann, A. Quantification of the Young’s modulus of the primary plant cell wall using Bending-Lab-On-Chip (BLOC). Lab. Chip. 13, 2599–2608 (2013).

Sanati Nezhad, A. et al. PDMS microcantilever-based flow sensor integration for Lab-on-a-Chip. IEEE Sensors J. 13, 601–609 (2013).

Whitesides, G. M. What comes next? Lab. Chip. 11, 191–193 (2011).

Blasiak, J., Mulcahy, D. L. & Musgrave, M. Oxytropism: a new twist in pollen tube orientation. Planta. Planta. 213, 318–322 (2001).

Bou Daher, F. & Geitmann, A. Actin is involved in pollen tube tropism through redefining the spatial targeting of secretory vesicles. Traffic. 12, 1537–1551 (2011).

Weisenseel, M. H., Dorn, A. & Jaffe, L. F. Natural H+ currents traverse growing roots and root hairs of barley (Hordeum vulgare L.). Plant Physiol. 64, 512–518 (1979).

Platzer, K., Obermeyer, G. & Bentrup, F.-W. AC fields of low frequency and amplitude stimulate pollen tube growth possibly via stimulation of the plasma membrane proton pump. Bioelectrochem. Bioenerg. 44, 95–102 (1997).

Nozue, K. & Wada, M. Electrotropism of Nicotiana pollen tubes. Plant Cell Physiol. 34, 1291–1296 (1993).

Sanati Nezhad, A., Packirisamy, M., Bhat, R. & Geitmann, A. In vitro study of oscillatory growth dynamics of Camellia pollen tubes in microfluidic environment. IEEE Trans. Biomed. Eng. 60, 3185–3193 (2013).

Agudelo, C. G. et al. TipChip: a modular, MEMS-based platform for experimentation and phenotyping of tip-growing cells. Plant J. Cell Mol. Biol. 73, 1057–1068 (2013).

Witters, D. et al. Digital biology and chemistry. Lab. Chip. 14, 3225–3232 (2014).

Kühtreiber, W. M. & Jaffe, L. F. Detection of extracellular calcium gradients with a calcium-specific vibrating electrode. J. Cell Biol. 110, 1565–1573 (1990).

Chandra, A. & Bagchi, B. Frequency dependence of ionic conductivity of electrolyte solutions. J. Chem. Phys. 112, 1876–1886 (2000).

Robinson, D. A. The electrical properties of metal microelectrodes. Proc. IEEE. 56, 1065–1071 (1968).

Burgess, J. & Linstead, P. J. Cell-wall differentiation during growth of electrically polarised protoplasts of Physcomitrella. Planta. 156, 241–248 (1982).

White, R. G., Hyde, G. J. & Overall, R. L. Microtubule arrays in regenerating Mougeotia protoplasts may be oriented by electric fields. Protoplasma. 158, 73–85 (1990).

Brower, D. L. & Giddings, T. H. The effects of applied electric fields on Micrasterias. J. Cell Sci. 42, 279–290 (1980).

McCaig, C. D., Sangster, L. & Stewart, R. Neurotrophins enhance electric field-directed growth cone guidance and directed nerve branching. Dev. Dyn. 217, 299–308 (2000).

Rajnicek, A. M., McCaig, C. D. & Gow, N. A. Electric fields induce curved growth of Enterobacter cloacae, Escherichia coli, and Bacillus subtilis cells: implications for mechanisms of galvanotropism and bacterial growth. J. Bacteriol. 176, 702–713 (1994).

Pu, J. & Zhao, M. Golgi polarization in a strong electric field. J. Cell Sci. 118, 1117–1128 (2005).
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top