Login | Register

An investigation on the efficiency of sophorolipids in removing arsenic from mine tailings


An investigation on the efficiency of sophorolipids in removing arsenic from mine tailings

Arab, Fereshteh (2017) An investigation on the efficiency of sophorolipids in removing arsenic from mine tailings. PhD thesis, Concordia University.

[thumbnail of Arab_PhD_2018.pdf]
Text (application/pdf)
Arab_PhD_2018.pdf - Accepted Version
Available under License Spectrum Terms of Access.


In many places around the world, arsenic is considered a primary pollutant in water due to its high toxicity. Various methods have been developed for the treatment of arsenic contaminated soil and water. In this study, the efficiency of high lactonic sophorolipids (SL18), in removing arsenic and heavy metals from mine tailings through the process of soil washing, was evaluated. Sophorolipids are capable of increasing the solubility of organic compounds and binding metalloids and heavy metals and are biocompatible, rapidly biodegradable, and non-toxic.
To investigate the efficiency of sophorolipids in heavy metal/metalloid removal, a series of batch and column tests, using different concentrations of sophorolipids (0.1, 0.5, 1, 2, 3, 4 and 5%), at different pH levels (2, 4, 6, 8, 10 and 12), and at three different temperatures (15ºC, 23ºC and 35ºC) was performed. Furthermore, the effect of sophorolipids on the speciation of arsenic, and the effectiveness of sophorolipids on different fractions of the mine tailings were examined. The results of this investigation show that using a 1% sophorolipid solution in a column test resulted in the removal of 83% of the arsenic. To identify the mechanism of removal of arsenic from mine tailings, the effect of sophorolipids on mine tailing sample through a sequential extraction procedure combined with Scanning Electron Microscopy (SEM), X-ray powder diffraction (XRD) scans was investigated. Also, the spectrum of sophorolipids was studied using Fourier-transform infrared spectroscopy (FTIR) and the effect of the presence of arsenic and iron on its functional groups was determined. Dynamic light scattering (DLS) measurements were used to find the effect of pH and mine tailing constituents on the size of micelles.
Investigations on the mechanism of sophorolipid assisted arsenic removal confirmed that the formation of arsenic complexes with sophorolipid functional groups, reducing the interfacial tension and solubilization, changing the net charge of surfaces and ion exchange are the main mechanisms. The impact of each mechanism is chiefly governed by the pH. The results from this study shed light on the mechanism of arsenic removal by biosurfactants and can aid in the development of a sustainable and environmentally friendly solution for mine tailing remediation.

Divisions:Concordia University > Gina Cody School of Engineering and Computer Science > Building, Civil and Environmental Engineering
Item Type:Thesis (PhD)
Authors:Arab, Fereshteh
Institution:Concordia University
Degree Name:Ph. D.
Program:Civil Engineering
Date:October 2017
Thesis Supervisor(s):Mulligan, Catherine N.
ID Code:983346
Deposited On:05 Jun 2018 15:03
Last Modified:05 Jun 2018 15:03


Akcil, A., & Koldas, S. (2006). Acid Mine Drainage (AMD): causes, treatment and case studies. Journal of Cleaner Production, 14(12), 1139-1145.
Alkan, G., Srecko Stopic, & Friedrich, B. (2017). Titanium extraction from red mud via hydrometallurgical treatment. European Metallurgical Conference, June 25 to June 28, 2017, Leipzig, Germany. DOI: 10.13140/RG.2.2.17939.78886.
Allan, R. 1979. Heavy metals in bottom sediments of Great Slave Lake (Canada): A reconnaissance. Environmental Geology, 3, 49-58.
Ameratunga, J., Sivakugan, N., & Das, B. M. (2016). Correlations of soil and rock properties in geotechnical engineering (pp. 8-9). Springer.
Ammar, A. J., Davis, M., Cossar, D., Miller, T., Humphreys, P., & Laws, A. P. (2016). Isolation of sophorose during sophorolipid production and studies of its stability in aqueous alkali: epimerisation of sophorose to 2-O-β-d-glucopyranosyl-d-mannose. Carbohydrate Research, 421, 46-54.
Andrade, C. F., Jamieson, H. E., Kyser, T. K., Praharaj, T., & Fortin, D. (2010). Biogeochemical redox cycling of arsenic in mine-impacted lake sediments and co-existing pore waters near Giant Mine, Yellowknife Bay, Canada. Applied Geochemistry, 25(2), 199-211.
Arab, F., & Mulligan, C. N. (2014). Chapter three: Rhamnolipids Biosurfactants: Research Trends and Applications. C. N. Mulligan, S. K. Sharma, A. Mudhoo (1 edition ed., pp. 49-104): CRC Press.
Arab, F., & Mulligan, C. N. (2016). The efficiency of sophorolipids for arsenic removal from mine tailings. Environmental Geotechnics. DOI: 10.1680/jenge.15.00016
Arab, F., & Mulligan, C. N. (2013), Evaluating the use of biosurfactants in the removal of arsenic from mine tailings, GeoMontreal, Sep. 29 to Oct. 2, 2013, Montreal, Canada.
Aswal, V. K., & Goyal, P. S. (2003). Role of different counterions and size of micelle in concentration dependence micellar structure of ionic surfactants. Chemical Physics Letters, 368(1), 59-65.
Azouzi, R., Charef, A., & Hamzaoui, A. H. (2015). Assessment of effect of pH, temperature and organic matter on zinc mobility in a hydromorphic soil. Environmental Earth Sciences, 74(4), 2967-2980.
Baccile, N., Babonneau, F., Jestin, J., Pehau-Arnaudet, G., & Van Bogaert, I. (2012). Unusual, pH-induced, self-assembly of sophorolipid biosurfactants. ACS Nano, 6(6), 4763-4776.
Baccile, N., Nassif, N., Malfatti, L., Van Bogaert, I. N., Soetaert, W., Pehau-Arnaudet, G., & Babonneau, F. (2010). Sophorolipids: a yeast-derived glycolipid as greener structure directing agents for self-assembled nanomaterials. Green Chemistry, 12(9), 1564-1567.
Baccile, N., Noiville, R., Stievano, L., & Van Bogaert, I. (2013). Sophorolipids-functionalized iron oxide nanoparticles. Physical Chemistry Chemical Physics, 15(5), 1606-1620.
Baccile, N., Pedersen, J. S., Pehau-Arnaudet, G., & Van Bogaert, I. N. (2013). Surface charge of acidic sophorolipid micelles: effect of base and time. Soft Matter, 9(19), 4911-4922.
Bajaj, Vinit Kamalkishor, & Uday S. Annapure. "Castor Oil as Secondary Carbon Source for Production of Sophorolipids Using Starmerella bombicola NRRL Y-17069." Journal of Oleo Science 64, no. 3 (2015): 315-323.
Beattie, M. J. V., & Poling, G. W. (1987). A study of the surface oxidation of arsenopyrite using cyclic voltammetry. International Journal of Mineral Processing, 20(1-2), 87-108.
Blais, J.F., REYNIER, N., & Mercier, G. (2013). Process for decontamination of soils polluted with metals, pentachlorophenol, dioxins and furans and contaminants removal from leachates: Google Patents.
Bodner, G. M., May, M. P., & Mckinney, L. E. (1980). A Fourier transform carbon-13 NMR study of the electronic effects of phosphorus, arsenic, and antimony ligands in transition metal carbonyl complexes. Inorganic Chemistry, 19(7), 1951-1958.
Borsari, M., Gabbi, C., Ghelfi, F., Grandi, R., Saladini, M., Severi, S., & Borella, F. (2001). Silybin, a new iron-chelating agent. Journal of Inorganic Biochemistry, 85(2), 123-129.
Boyle, R. W. (1960). The Geology, Geochemistry, and Origin of the Gold, Deposits of the Yellowknife District. Department of Mines and Technical surveys.
Bowell, R. J. (1994). Sorption of arsenic by iron oxides and oxyhydroxides in soils. Applied Geochemistry, 9(3), 279-286.
Bowell, R., Alpers, C., Jamieson, H., Nordstrom, K., & Majzlan, J. (Eds.). (2014). Arsenic: Environmental Geochemistry, Mineralogy, and Microbiology (Vol. 79). Walter de Gruyter GmbH & Co KG.
Canadian Council of Ministers of the Environment (CCME). 1997. Recommended Canadian Soil Quality Guidelines. Winnipeg, Manitoba, Canada.
Cantor, C. R., & Schimmel, P. R. (1980). Part III: The behavior of biological macromolecules. Biophysical Chemistry, WH Freeman and Company, New York.
Cates, M. & Candau, S. 1990. Statics and dynamics of worm-like surfactant micelles. Journal of Physics: Condensed Matter, 2, 6869.
Chandran, P., & Das, N. (2011). Characterization of sophorolipid biosurfactant produced by yeast species grown on diesel oil. Int J Sci Nat, 2, 63-71.
Chowdhury, A. M. R. 2004. ARSENIC CRISIS. Scientific American.
Chowdhury, M.R. I. (2015). Removal of Arsenic from Contaminated Water by Granular Activated Carbon Embedded with Nano scale Zero-valent Iron (Doctoral dissertation, Concordia University).
Clark, I. D. & Raven, K. G. 2004. Sources and circulation of water and arsenic in the Giant Mine, Yellowknife, NWT, Canada. Isotopes in Environmental and Health Studies, 40, 115-128.
Constantine, T., & Price, L. (1983). Removal of cyanide and arsenic from tailings decant water at giant-Yellowknife-mines, Yellowknife, NWT. The Canadian Institute of Mining Bulletin, 76(851), 56-56.
Corkhill, C. L., & Vaughan, D. J. (2009). Arsenopyrite oxidation–A review. Applied Geochemistry, 24(12), 2342-2361.
Cornell, R. M., & Schwertmann, U. (2003). The iron oxides: structure, properties, reactions, occurrences, and uses. John Wiley & Sons.
Corrin, M. L. & Harkins, W. D. 1947. The Effect of Salts on the Critical Concentration for the Formation of Micelles in Colloidal Electrolytes1. Journal of the American Chemical Society, 69, 683-688.
Cotton, F. A. (1964). Vibrational spectra and bonding in metal carbonyls. III. Force constants and assignments of CO stretching modes in various molecules; evaluation of CO bond orders. Inorganic Chemistry, 3(5), 702-711.
Cousens, B. L. (2000). Geochemistry of the Archean Kam Group, Yellowknife Greenstone Belt, Slave Province, Canada. The Journal of Geology, 108(2), 181-197.
Cuvier, A. S., Berton, J., Stevens, C. V., Fadda, G. C., Babonneau, F., Van Bogaert, I. N., ... & Baccile, N. (2014). pH-triggered formation of nanoribbons from yeast-derived glycolipid biosurfactants. Soft Matter, 10(22), 3950-3959.
Czaplicki, L. M., Cooper, E., Ferguson, P. L., Stapleton, H. M., Vilgalys, R., & Gunsch, C. K. (2016). A New Perspective on Sustainable Soil Remediation—Case Study Suggests Novel Fungal Genera Could Facilitate in situ Biodegradation of Hazardous Contaminants. Remediation Journal, 26(2), 59-72.
Dahrazma, B., Mulligan, C. N., & Nieh, M. P. (2008). Effects of additives on the structure of rhamnolipid (biosurfactant): A small-angle neutron scattering (SANS) study. Journal of Colloid and Interface Science, 319(2), 590-593.
Das, Dilip Kumar, Garai, TK, Sarkar, S, & Sur, Pintu. (2005). Interaction of Arsenic with Zinc and Organics in a Rice (Oryza sativa L.)–Cultivated Field in India. The Scientific World Journal, 5, 646-651.
Daverey, A., & Pakshirajan, K. (2009). Production of sophorolipids by the yeast Candida bombicola using simple and low cost fermentative media. Food Research International, 42(4), 499-504.
Daverey, A., & Pakshirajan, K. (2009). Production, characterization, and properties of sophorolipids from the yeast Candida bombicola using a low-cost fermentative medium. Applied Biochemistry and Biotechnology, 158(3), 663-674.
Daverey, A., & Pakshirajan, K. (2010). Sophorolipids from Candida bombicola using mixed hydrophilic substrates: production, purification, and characterization. Colloids and Surfaces B: Biointerfaces, 79(1), 246-253.
Davis, A. P., & Singh, I. (1995). Washing of zinc (II) from contaminated soil column. Journal of Environmental Engineering, 121(2), 174-185.
Dermont, G., Bergeron, M., Mercier, G., & Richer-Laflèche, M. (2008). Soil washing for metal removal: a review of physical/chemical technologies and field applications. Journal of Hazardous Materials, 152(1), 1-31.
Deshpande, S., Shiau, B. J., Wade, D., Sabatini, D. A., & Harwell, J. H. (1999). Surfactant selection for enhancing ex situ soil washing. Water Research, 33(2), 351-360.
Develter, Dirk WG, & Lauryssen, Luc ML. (2010). Properties and industrial applications of sophorolipids. European Journal of Lipid Science and Technology, 112(6), 628-638.
Dhasaiyan, P., Banerjee, A., Visaveliya, N., & Prasad, B. L. V. (2013). Influence of the Sophorolipid Molecular Geometry on their Self‐Assembled Structures. Chemistry–An Asian Journal, 8(2), 369-372.
Dimiduk, D. M. (1999). Gamma titanium aluminide alloys—an assessment within the competition of aerospace structural materials. Materials Science and Engineering: A, 263(2), 281-288.
Dixit, S. and Hering, J. G. 2003. Comparison of arsenic (V) and arsenic (III) sorption onto iron oxide minerals: Implications for arsenic mobility. Environmental Science & Technology, 37, 4182-4189.
Dos Santos, E. C., Lourenço, M. P., Pettersson, L. G., & Duarte, H. A. (2017). Stability, Structure, and Electronic Properties of the Pyrite/Arsenopyrite Solid–Solid Interface–A DFT Study. The Journal of Physical Chemistry C, 121(14), 8042-8051.
Dove, P. M. & Rimstidt, J. D. 1985. The solubility and stability of scorodite, FeAsO4. 2H2O. American Mineralogist, 70 (7), 838-844.
Dushenko, W. T., Bright, D. A., & Reimer, K. J. (1995). Arsenic bioaccumulation and toxicity in aquatic macrophytes exposed to gold-mine effluent: relationships with environmental partitioning, metal uptake, and nutrients. Aquatic Botany, 50(2), 141-158.
Dzombak, D.A., Morel, F.M.M., 1990. Surface Complexation Modeling: Hydrous Ferric Oxide. John Wiley & Sons, Toronto, Canada.
Ecover. 2014. Price Quotation for Sophorolipids (SL) [Online]. Available: http://www.agrobiobase.com/base/data/f_283/p_509/documents/product%20information%20for%20ecover%20sl18.pdf 2014].
Environment Canada, 2017, 1981-2010 Climate Normals & Averages. Website: http://climate.weather.gc.ca/climate_normals/ (accessed Nov. 2017).
Environmental Protection Agency (EPA) 1996. A Citizen’s Guide to Soil Washing. OSWER. April. EPA 542-F-96-002.
Environmental Protection Agency (EPA), 2009. Contaminants in soil: updated collation of toxicological data and intake values for humans. Inorganic arsenic. Science Report SC050021/SR TOX1.
Fawcett, S. E., Jamieson, H. E., Nordstrom, D. K., & McCleskey, R. B. (2015). Arsenic and antimony geochemistry of mine wastes, associated waters and sediments at the Giant Mine, Yellowknife, Northwest Territories, Canada. Applied Geochemistry, 62, 3-17.
Frazer, L. (2005). Metal Attraction An Ironclad Solution to Arsenic Contamination? Environmental health perspectives, 113, no. 6 (2005): A399-A401.
Frost, R. & Griffin, R. 1977. Effect of pH on adsorption of arsenic and selenium from landfill leachate by clay minerals. Soil Science Society of America Journal, 41, 53-57.
Gaspard, S., & Ncibi, M. C. (Eds.). (2013). Biomass for Sustainable Applications: Pollution Remediation and Energy (Vol. 25). Royal Society of Chemistry (chapter 4).
Geelhoed, J. S., Meeussen, J. C., Roe, M. J., Hillier, S., Thomas, R. P., Farmer, J. G., & Paterson, E. (2003). Chromium remediation or release? Effect of iron (II) sulfate addition on chromium (VI) leaching from columns of chromite ore processing residue. Environmental Science & Technology, 37(14), 3206-3213.
Gómez-Bombarelli, R., Calle, E., & Casado, J. (2013). Mechanisms of lactone hydrolysis in neutral and alkaline conditions. The Journal of Organic Chemistry, 78(14), 6868-6879.
Government of Northwest Territories. 2015. Climate observations in the Northwest Territories (1957-2012). Website: http://www.enr.gov.nt.ca/sites/enr/files/page_3_nwt-climate-observations_06-13-2015_vf_1_0.pdf (retrived: Nov. 2017).
Grantham, D. A., & Jones, J. F. (1977). Arsenic Contamination of Water Wells in Nova Scotia (PDF). Journal-American Water Works Association, 69(12), 653-657.
Guemiza, K., Coudert, L., Tran, L. H., Metahni, S., Blais, J. F., Besner, S., & Mercier, G. (2017). Optimizing removal of arsenic, chromium, copper, pentachlorophenol and polychlorodibenzo-dioxins/furans from the 1–4 mm fraction of polluted soil using an attrition process. Environmental Technology, 38(15), 1862-1877.
Guemiza, K., Coudert, L., Metahni, S., Mercier, G., Besner, S., & Blais, J. F. (2017). Treatment technologies used for the removal of As, Cr, Cu, PCP and/or PCDD/F from contaminated soil: A review. Journal of Hazardous Materials. Volume 333, 5 July 2017, Pages 194-214.
Harris, W. R., Carrano, C. J., & Raymond, K. N. (1979). Spectrophotometric determination of the proton-dependent stability constant of ferric enterobactin. Journal of the American Chemical Society, 101(8), 2213-2214.
Hayter, R. G. (1963). Phosphorus-and Arsenic-Bridged Complexes of Metal Carbonyls. II. Cyclopentadienylnickel, molybdenum, and tungsten Complexes. Inorganic Chemistry, 2(5), 1031-1035.
Hayter, R. G. (1964). Phosphorus-and Arsenic-Bridged Complexes of Metal Carbonyls. VI. Reactions of Tetrasubstituted Biphosphines and a Biarsine with Monomeric Metal Carbonyls. Inorganic Chemistry, 3(5), 711-717.
Holm, T. R., & Wilson, S. D. (2006). Chemical Oxidation for Arsenic Removal from Drinking Water. Illinois State Water Survey, Midwest Technology Assistance Center for Small Public Water Systems (MTAC).
Horowitz, A. J. & Elrick, K. A. 1987. The relation of stream sediment surface area, grain size, and composition to trace element chemistry. Applied Geochemistry, 2, 437-451.
Hu, Y., & Ju, L. K. (2001). Purification of lactonic sophorolipids by crystallization. Journal of Biotechnology, 87(3), 263-272.
Hubbard, C. & O'connor, B. 2002. International Centre for Diffraction Data (ICDD).
Interstate Technology & Regulatory Council (ITRC). 1997. Technical and Regulatory Guidelines for Soil Washing. Metals in Soil Workgroup. Washington, D.C. December. MIS-1.
Ishigami, Y., Gama, Y., Nagahora, H., Yamaguchi, M., Nakahara, H., & Kamata, T. (1987). The pH-sensitive conversion of molecular aggregates of rhamnolipid biosurfactant. Chemistry Letters, 16(5), 763-766.
Ismail, M. 2008. Mathematical correlations between the effective diameter of soil and other properties. Engineering and Technology, 26, 1274-1281.
Jain, C. K., & Ali, I. (2000). Arsenic: occurrence, toxicity and speciation techniques. Water Research, 34(17), 4304-4312.
Jamieson, H. E., Walker, S. R., & Parsons, M. B. (2015). Mineralogical characterization of mine waste. Applied Geochemistry, 57, 85-105.
Jones, R. A., & Nesbitt, H. W. (2002). XPS evidence for Fe and As oxidation states and electronic states in loellingite (FeAs2). American Mineralogist, 87(11-12), 1692-1698.
Kasture, M., Singh, S., Patel, P., Joy, P. A., Prabhune, A. A., Ramana, C. V., & Prasad, B. L. V. (2007). Multiutility sophorolipids as nanoparticle capping agents: synthesis of stable and water dispersible Co nanoparticles. Langmuir, 23(23), 11409-11412.
Kim, I. S., Park, J. S., & Kim, K. W. (2001). Enhanced biodegradation of polycyclic aromatic hydrocarbons using nonionic surfactants in soil slurry. Applied Geochemistry, 16(11), 1419-1428.
Kim, J., & Vipulanandan, C. (2006). Removal of lead from contaminated water and clay soil using a biosurfactant. Journal of Environmental Engineering, 132(7), 777-786.
Kim, T. H., Han, Y. S., Seong, B. S., & Hong, K. P. (2011). Thermally responsive vesicles based on a mixture of cationic surfactant and organic derivative below the CMC. Soft Matter, 7(21), 10070-10075.
Koch, I., Wang, L., Ollson, C. A., Cullen, W. R. & Reimer, K. J. 2000. The predominance of inorganic arsenic species in plants from Yellowknife, Northwest Territories, Canada. Environmental Science & Technology, 34, 22-26.
Kołodyńska, D., Krukowska, J., & Thomas, P. (2017). Comparison of sorption and desorption studies of heavy metal ions from biochar and commercial active carbon. Chemical Engineering Journal, 307, 353-363.
Kothari, K., Radhakrishnan, R., & Wereley, N. M. (2012). Advances in gamma titanium aluminides and their manufacturing techniques. Progress in Aerospace Sciences, 55, 1-16.
Kosmulski, M. (2004). pH-dependent surface charging and points of zero charge II. Update. Journal of Colloid and Interface Science, 275(1), 214-224.
Lang, S. (2002). Biological amphiphiles (microbial biosurfactants). Current Opinion in Colloid & Interface Science, 7(1), 12-20.
Li, W., Yang, Y., Liu, L., Tan, X., Luo, T., & Shen, J. (2015). Dual stimuli-responsive self-assembly transition in zwitterionic/anionic surfactant systems. Soft Matter, 11(21), 4283-4289.
Mandal, B. K. & Suzuki, K. T. (2002). Arsenic round the world: a review. Talanta, 58, 201-235.
Manet, S., Cuvier, A. S., Valotteau, C., Fadda, G. C., Perez, J., Karakas, E., Stéphane Abel & Baccile, N. (2015). Structure of bolaamphiphile sophorolipid micelles characterized with SAXS, SANS, and MD simulations. The Journal of Physical Chemistry B, 119(41), 13113-13133.
Manning, B.A., Goldberg, S., 1997. Arsenic (III) and arsenic (V) adsorption on three California soils. Soil Sci. 162, 886–895.
Masscheleyn, P. H., Delaune, R. D., & Patrick Jr, W. H. (1991). Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil. Environmental Science & Technology, 25(8), 1414-1419.
Mattson, E. C., Aboualizadeh, E., Barabas, M. E., Stucky, C. L., & Hirschmugl, C. J. (2013). Opportunities for live cell FT-infrared imaging: macromolecule identification with 2D and 3D localization. International Journal of Molecular Sciences, 14(11), 22753-22781.
Mazumder, D. N. G., Haque, R., Ghosh, N., Binay K. D., Santra, A., Chakraborty, D. & Smith, A. H. (1998). Arsenic levels in drinking water and the prevalence of skin lesions in West Bengal, India. International Journal of Epidemiology, 27, 871-877.
Mercier, G., Blais, J.F., Guemiza, K., Metahni, S., Mercier, G., Chartier, M., . . . Besner, S. (2017). Decontamination process of soils and effluents polluted by inorganic and/or organic contaminants: Google Patents.
Metahni, S., Coudert, L., Chartier, M., Blais, J. F., Mercier, G., & Besner, S. (2017). Pilot-Scale Decontamination of Soil Polluted with As, Cr, Cu, PCP, and PCDDF by Attrition and Alkaline Leaching. Journal of Environmental Engineering, 143(9), 04017055.
Miller, R. M. (1995). Biosurfactant-facilitated remediation of metal-contaminated soils. Environmental Health Perspectives, 103(Suppl 1), 59.
Milton, A. H., Smith, W., Rahman, B., Hasan, Z., Kulsum, U., Dear, K., Rakibuddin, M. & Ali, A. 2005. Chronic arsenic exposure and adverse pregnancy outcomes in Bangladesh. Epidemiology, 16, 82-86.
Mitra, S. & Dungan, S. R. (1997). Micellar properties of Quillaja saponin. 1. Effects of temperature, salt, and pH on solution properties. Journal of Agricultural and Food Chemistry, 45, 1587-1595.
Moghimi, A. H., Hamdan, J., Shamshuddin, J., Samsuri, A. W., & Abtahi, A. (2013). Physicochemical properties and surface charge characteristics of arid soils in Southeastern Iran. Applied and Environmental Soil Science, Volume 2013, Article ID 252861, pages 1-11. DOI: http://dx.doi.org/10.1155/2013/252861
Moore, J. W., Beaubien, V. A. & Sutherland, D. J. (1979). Comparative effects of sediment and water contamination on benthic invertebrates in four lakes. Bulletin of Environmental Contamination and Toxicology, 23, 840-847.
Morales, K. H., Ryan, L., Kuo, T. L., Wu, M. M. & Chen, C. J. (2000). Risk of internal cancers from arsenic in drinking water. Environment Health Perspectives, 108(7), 655-661.
Morya VK, Kim EK (2014) Sophorolipids: characteristics, production and application (chapter 4). In: Mulligan CN, Sharma SK, Mudhoo A (1th Ed.) Biosurfactants: Research Trends and Application. CRC Press, 105-124.
Mudgil, P. (2011). Biosurfactants for soil biology. In A. Singh, N. Parmar, & R. C. Kuhad (Eds.), Bioaugmentation, Biostimulation and Biocontrol. DOI:10.1007/978-3-642-19769-7_9
Mudroch, A., Joshi, S., Sutherland, D., Mudroch, P. & Dickson, K. (1989). Geochemistry of sediments in the back bay and Yellowknife Bay of the Great Slave Lake. Environmental Geology and Water Sciences, 14, 35-42
Mulligan, C. N. (2005). Environmental applications for biosurfactants. Environmental Pollution, 133(2), 183-198.
Mulligan, C. N., Yong, R. N., & Gibbs, B. F. (2001). Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Engineering Geology, 60(1), 193-207.
Mulligan, C. N. (1998). On the capability of biosurfactants for the removal of heavy metals from soil and sediments, (PhD Dissertation). McGill University, Montreal, QC.
Nakamoto, K. (1986). Infrared and Raman spectra of inorganic and coordination compounds. John Wiley & Sons, Ltd.
Neubauer, K. (2010). Reducing the Effects of Interferences in Quadrupole ICP-MS. Retrieved from http://www.spectroscopyonline.com/reducing-effects-interferences-quadrupole-icp-ms.
Nordstrom, D. K. (2002). Worldwide occurrences of arsenic in ground water. Science, 296, 2143-2145.
Ochoa-Loza, F. J., Artiola, J. F., & Maier, R. M. (2001). Stability constants for the complexation of various metals with a rhamnolipid biosurfactant. Journal of Environmental Quality, 30(2), 479-485.
O'Day, P. A. (2006). Chemistry and mineralogy of arsenic. Elements, 2(2), 77-83.
Pacwa-Płociniczak, M., Płaza, G. A., Piotrowska-Seget, Z., & Cameotra, S. S. (2011). Environmental applications of biosurfactants: recent advances. International Journal of Molecular Sciences, 12(1), 633-654.
Panagiotaras, D., & Nikolopoulos, D. (2015). Arsenic Occurrence and Fate in the Environment; A Geochemical Perspective. Journal of Earth Science & Climatic Change, 6(4), 1.
Papageorgiou, S. K., Kouvelos, E. P., Favvas, E. P., Sapalidis, A. A., Romanos, G. E., & Katsaros, F. K. (2010). Metal–carboxylate interactions in metal–alginate complexes studied with FTIR spectroscopy. Carbohydrate Research, 345(4), 469-473.
Pepper, IL, Zerzghi, HG, Bengson, SA, Iker, BC, Banerjee, MJ, & Brooks, JP. (2012). Bacterial populations within copper mine tailings: long‐term effects of amendment with Class A biosolids. Journal of Applied Microbiology, 113(3), 569-577.
Pretsch, E., Clerc, T., Seibl, J. & Simon, W. 2013. Tables of spectral data for structure determination of organic compounds, Springer Science & Business Media.
Qafoku, N. P., Van Ranst, E., Noble, A., & Baert, G. (2004). Variable charge soils: their mineralogy, chemistry and management. Advances in Agronomy, 84, 159-215.
Qiang, T., Xiao-quan, S., & Zhe-ming, N. (1994). Evaluation of a sequential extraction procedure for the fractionation of amorphous iron and manganese oxides and organic matter in soils. Science of the Total Environment, 151(2), 159-165.
Rahman, P. K. S., Pasirayi, G., Auger, V., & Ali, Z. (2010). Production of rhamnolipid biosurfactants by Pseudomonas aeruginosa DS10-129 in a microfluidic bioreactor, Biotechnology and Applied Biochemistry, 55 (1), pp.45-52.
Rau, U., Heckmann, R., Wray, V., & Lang, S. (1999). Enzymatic conversion of a sophorolipid into a glucose lipid. Biotechnology Letters, 21(11), 973-977.
Rau, U., Hammen, S., Heckmann, R., Wray, V., & Lang, S. (2001). Sophorolipids: a source for novel compounds. Industrial Crops and Products, 13(2), 85-92.
Raymond, K. N., Müller, G., & Matzanke, B. F. (1984). Complexation of iron by siderophores a review of their solution and structural chemistry and biological function. In Structural Chemistry (pp. 49-102). Springer Berlin Heidelberg.
Reynier, N., Blais, J. F., Mercier, G., & Besner, S. (2013). Optimization of arsenic and pentachlorophenol removal from soil using an experimental design methodology. Journal of Soils and Sediments, 13(7), 1189-1200.
Robinson, W. O. (1927). The determination of organic matter in soils by means of hydrogen peroxide. Journal of Agricultural Research, 34, 339-356.
Rong, S. H. I., Yongfeng, J. I. A., & Chengzhi, W. A. N. G. (2009). Competitive and cooperative adsorption of arsenate and citrate on goethite. Journal of Environmental Sciences, 21(1), 106-112.
Shah, S., & Prabhune, A. (2007). Purification by silica gel chromatography using dialysis tubing and characterization of sophorolipids produced from Candida bombicola grown on glucose and arachidonic acid. Biotechnology Letters, 29(2), 267-272.
Shalat, S. L., Walker, D. B. & Finnell, R. H. 1996. Role of arsenic as a reproductive toxin with particular attention to neural tube defects. Journal of Toxicology and Environmental Health, 48, 253-272.
Sandlos, J., & Keeling, A. (2012). Giant mine: Historical summary. Report submitted to Mackenzie Valley Environmental Review Board public registry.
Scherer, O. J. (1985). Phosphorus, Arsenic, Antimony, and Bismuth Multiply Bonded Systems with Low Coordination Number—Their Role as Complex Ligands. Angewandte Chemie International Edition in English, 24(11), 924-943.
Schofield, R. K., & Taylor, A. W. (1955). The measurement of soil pH. Soil Science Society of America, 19, 164-167.
Schwertmann, U. (1991). Solubility and dissolution of iron oxides. Plant and Soil. Volume 130 (1), 1–25. DOI: https://doi.org/10.1007/BF00011851.
Sidhu, P. S., Gilkes, R. J., Cornell, R. M., & Posner, A. M. (1981). Dissolution of iron oxides and oxyhydroxides in hydrochloric and perchloric acids. Clays Clay Minerals, 29 (4), 269-276. DOI: 10.1346/CCMN.1981.0290404.
Silverstein, R. M., Webster, F. X., Kiemle, D. J. & Bryce, D. L. 2014. Spectrometric identification of organic compounds, John Wiley & Sons.
Singh, S., Patel, P., Jaiswal, S., Prabhune, A. A., Ramana, C. V., & Prasad, B. L. V. (2009). A direct method for the preparation of glycolipid–metal nanoparticle conjugates: sophorolipids as reducing and capping agents for the synthesis of water re-dispersible silver nanoparticles and their antibacterial activity. New Journal of Chemistry, 33(3), 646-652.
Slizovskiy, I. B., Kelsey, J. W., & Hatzinger, P. B. (2011). Surfactant-facilitated remediation of metal-contaminated soils: efficacy and toxicological consequences to earthworms. Environmental Toxicology and Chemistry, 30(1), 112-123.
Smedley, P. L., & Kinniburgh, D. G. (2001). Source and behavior of arsenic in natural waters. United Nations synthesis report on arsenic in drinking water. World Health Organization, Geneva, Switzerland. http://www. who. int/water_sanitation_health/dwq/arsenicun1. pdf, 1-61.
Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17, 517-568.
Smedley, P., Edmunds, W. & Pelig-Ba, K. (1996). Mobility of arsenic in groundwater in the Obuasi gold-mining area of Ghana: some implications for human health. Geological Society, London, Special Publications, 113, 163-181.
Smith, K. S. (1999). Metal sorption on mineral surfaces: an overview with examples relating to mineral deposits. The environmental geochemistry of mineral deposits. Reviews in Economic Geology, 6, 161-182.
Smith, A. H., Lingas, E. O., & Rahman, M. (2000). Contamination of drinking-water by arsenic in Bangeladesh: a public health emergency. Bulletin of the World Health Organization, 78(9), 1093-1103.
Song, D., Li, Y., Liang, S., & Wang, J. (2013). Micelle behaviors of sophorolipid/rhamnolipid binary mixed biosurfactant systems. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 436, 201-206.
Somasundaran, P. (2006). Encyclopedia of surface and colloid science (Vol. 2). CRC Press.
Stumm, W., Morgan, J. J., & Drever, J. I. (1996). Aquatic chemistry. Journal of Environmental Quality, 25(5), 1162.
Takizawa, T., Nakayama, N., Haniu, H., Aoki, K., Okamoto, M., Nomura, H, Tanaka, M., Sobajima, A., Yoshida, K., Kamanaka, T. & Ajima, K. (2017). Titanium Fiber Plates for Bone Tissue Repair. Advanced Materials. DOI: https://doi.org/10.1002/adma.201703608
Tessier, A., Campbell, P. G., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51(7), 844-851.
Theis, T. L. & Singer, P. C. 1974. Complexation of iron (II) by organic matter and its effect on iron (II) oxygenation. Environmental Science & Technology, 8, 569-573.
US Environmental Protection Agency (USEPA), 1986. Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, EPA Publication SW-846, Method 9081, https://www.epa.gov/sites/production/files/2015-12/documents/9081.pdf (Retrived 2012)
Varade, D., Joshi, T., Aswal, V. K., Goyal, P. S., Hassan, P. A. & Bahadur, P. 2005b. Effect of salt on the micelles of cetyl pyridinium chloride. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 259, 95-101.
Veizer, J., Hoefs, J., Lowe, D. R., & Thurston, P. C. (1989). Geochemistry of Precambrian carbonates: II. Archean greenstone belts and Archean sea water. Geochimica et Cosmochimica Acta, 53(4), 859-871.
Wagman, D. D., Evans, W. H., Parker, V. B., Schumm, R. H., & Halow, I. (1982). The NBS tables of chemical thermodynamic properties. Selected values for inorganic and C1 and C2 organic substances in SI units. National Standard Reference Data System.
Wang, S. (2003). Biosurfactant enhanced remediation of heavy metal contaminated soil (Doctoral dissertation, Concordia University).
Wang, S., & Mulligan, C. N. (2009 a). Arsenic mobilization from mine tailings in the presence of a biosurfactant. Applied Geochemistry, 24(5), 928-935.
Wang, S., & Mulligan, C. N. (2009 b). Rhamnolipid biosurfactant-enhanced soil flushing for the removal of arsenic and heavy metals from mine tailings. Process Biochemistry, 44(3), 296-301.
Wayland, M. (2004). Mackenzie River Basin: State of the Aquatic Ecosystem Report, 2003. [Fort Smith, NWT]: Mackenzie River Basin Board.
Webera, A., Maya, A., Zeiner, T., & Góraka, A. (2012). Downstream processing of biosurfactants. Chemical Engineering Trans, 27:115–120.
Weisseborn, P. K., Warren, L. J., & Dunn, J. G. (1995). Selective flocculation of ultrafine iron ore. 1. Mechanism of adsorption of starch onto hematite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 99(1), 11-27.
Wentworth, C. K. (1922). A scale of grade and class terms for clastic sediments. The Journal of Geology, 30(5), 377-392.
Wu, X., Xu, L. Y., Zhang, X. X., Song, Y., Wang, X., & Jia, Y. F. (2012). Speciation transformation and behavior of arsenic in soils under anoxic conditions. Huan jing ke xue= Huanjing kexue, 33(1), 273-279.
Wu, S. C., Cheung, K. C., Luo, Y. M. & Wong, M. H. 2006. Effects of inoculation of plant growth-promoting rhizobacteria on metal uptake by Brassica juncea. Environmental Pollution, 140, 124-135.
Yong, R. N., Galvez-Cloutier, R., & Phadungchewit, Y. (1993). Selective sequential extraction analysis of heavy-metal retention in soil. Canadian Geotechnical Journal, 30(5), 834-847.
Yong, R. N., Mulligan, C. N. & Fukue, M. 2014. Sustainable Practices in Geoenvironmental Engineering, Second Edition, CRC Press.
Yu, H. Y., Li, F. B., Liu, C. S., Huang, W., Liu, T. X., & Yu, W. M. (2016). Chapter Five-Iron Redox Cycling Coupled to Transformation and Immobilization of Heavy Metals: Implications for Paddy Rice Safety in the Red Soil of South China. Advances in Agronomy, 137, 279-317.
Zhou, S., Xu, C., Wang, J., Gao, W., Akhverdiyeva, R., Shah, V., & Gross, R. (2004). Supramolecular assemblies of a naturally derived sophorolipid. Langmuir, 20(19), 7926-7932.
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top