Login | Register

Biological Clocks and Rhythms of Anger and Aggression


Biological Clocks and Rhythms of Anger and Aggression

Hood, Suzanne and Amir, Shimon ORCID: https://orcid.org/0000-0003-1919-5023 (2018) Biological Clocks and Rhythms of Anger and Aggression. Frontiers in Behavioral Neuroscience, 12 (4). pp. 1-12. ISSN 1662-5153

[thumbnail of Hood-and-Amir-2018.pdf]
Text (application/pdf)
Hood-and-Amir-2018.pdf - Published Version
Available under License Spectrum Terms of Access.

Official URL: http://dx.doi.org/10.3389/fnbeh.2018.00004


The body’s internal timekeeping system is an under-recognized but highly influential force in behaviors and emotions including anger and reactive aggression. Predictable cycles or rhythms in behavior are expressed on several different time scales such as circadian (circa diem, or approximately 24-h rhythms) and infradian (exceeding 24 h, such as monthly or seasonal cycles). The circadian timekeeping system underlying rhythmic behaviors in mammals is constituted by a network of clocks distributed throughout the brain and body, the activity of which synchronizes to a central pacemaker, or master clock. Our daily experiences with the external environment including social activity strongly influence the exact timing of this network. In the present review, we examine evidence from a number of species and propose that anger and reactive aggression interact in multiple ways with circadian clocks. Specifically, we argue that: (i) there are predictable rhythms in the expression of aggression and anger; (ii) disruptions of the normal functioning of the circadian system increase the likelihood of aggressive behaviors; and (iii) conversely, chronic expression of anger can disrupt normal rhythmic cycles of physiological activities and create conditions for pathologies such as cardiovascular disease to develop. Taken together, these observations suggest that a comprehensive perspective on anger and reactive aggression must incorporate an understanding of the role of the circadian timing system in these intense affective states.

Divisions:Concordia University > Faculty of Arts and Science > Psychology
Item Type:Article
Authors:Hood, Suzanne and Amir, Shimon
Journal or Publication:Frontiers in Behavioral Neuroscience
  • Natural Sciences and Engineering Research Council of Canada
  • Fonds de la Recherché en Santé Québec
  • Canadian Institutes for Health Research (grant no. #MOP142458)
Digital Object Identifier (DOI):10.3389/fnbeh.2018.00004
ID Code:983437
Deposited By: Danielle Dennie
Deposited On:23 Jan 2018 15:26
Last Modified:23 Jan 2018 15:26


Abarca, C., Albrecht, U., and Spanagel, R. (2002). Cocaine sensitization and reward are under the influence of circadian genes and rhythm. Proc. Natl. Acad. Sci. U S A 99, 9026–9030. doi: 10.1073/pnas.142039099

Adam, E. K., Hawkley, L. C., Kudielka, B. M., and Cacioppo, J. T. (2006). Day-to-day dynamics of experience—cortisol associations in a population-based sample of older adults. Proc. Natl. Acad. Sci. U S A 103, 17058–17063. doi: 10.1073/pnas.0605053103

Alia-Klein, N., Goldstein, R. Z., Kriplani, A., Logan, J., Tomasi, D., Williams, B., et al. (2008). Brain monoamine oxidase A activity predicts trait aggression. J. Neurosci. 28, 5099–5104. doi: 10.1523/JNEUROSCI.0925-08.2008

Al-Safadi, S., Branchaud, M., Rutherford, S., and Amir, S. (2015). Glucocorticoids and stress-induced changes in the expression of PERIOD1 in the rat forebrain. PLoS One 10:e0130085. doi: 10.1371/journal.pone.0130085

Anderson, C. A., Anderson, K. B., Dorr, N., DeNeve, K. M., and Flanagan, M. (2000). Temperature and aggression. Adv. Exp. Soc. Psychol. 32, 63–133. doi: 10.1016/S0065-2601(00)80004-0

Archer, S. N., and Oster, H. (2015). How sleep and wakefulness influence circadian rhythmicity: effects of insufficient and mistimed sleep on the animal and human transcriptome. J. Sleep Res. 24, 476–493. doi: 10.1111/jsr.12307

Asher, G., Gatfield, D., Stratmann, M., Reinke, H., Dibner, C., Kreppel, F., et al. (2008). SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134, 317–328. doi: 10.1016/j.cell.2008.06.050

Aston-Jones, G., Chen, S., Zhu, Y., and Oshinsky, M. L. (2001). A neural circuit for circadian regulation of arousal. Nat. Neurosci. 4, 732–738. doi: 10.1038/89522

Atanackovic, D., Schulze, J., Kröger, H., Brunner-Weinzierl, M. C., and Deter, H. C. (2003). Acute psychological stress induces a prolonged suppression of the production of reactive oxygen species by phagocytes. J. Neuroimmunol. 142, 159–165. doi: 10.1016/s0165-5728(03)00267-4

Bachman, D., and Rabins, P. (2006). “Sundowning” and other temporally associated agitation states in dementia patients. Annu. Rev. Med. 57, 499–511. doi: 10.1146/annurev.med.57.071604.141451

Bailey, A. M., Rendon, N. M., O’Malley, K. J., and Demas, G. E. (2016). Food as a supplementary cue triggers seasonal changes in aggression, but not reproduction, in siberian hamsters. Physiol. Behav. 167, 298–308. doi: 10.1016/j.physbeh.2016.09.023

Balsalobre, A., Brown, S. A., Marcacci, L., Tronche, F., Kellendonk, C., Reichardt, H. M., et al. (2000). Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science 289, 2344–2347. doi: 10.1126/science.289.5488.2344

Beatty, D. L., and Matthews, K. A. (2009). Unfair treatment and trait anger in relation to nighttime ambulatory blood pressure in african american and white adolescents. Psychosom. Med. 71, 813–820. doi: 10.1097/PSY.0b013e3181b3b6f8

Blank, D. A., Ruckstuhl, K., and Yang, W. (2015). Seasonal dynamics of agonistic displays in territorial and non-territorial males of goitered gazelle. Zoology 118, 63–68. doi: 10.1016/j.zool.2014.08.004

Boylan, J. M., and Ryff, C. D. (2013). Varieties of anger and the inverse link between education and inflammation: toward an integrative framework. Psychosom. Med. 75, 566–574. doi: 10.1097/PSY.0b013e31829683bd

Brissette, I., and Cohen, S. (2002). The contribution of individual differences in hostility to the associations between daily interpersonal conflict, affect, and sleep. Pers. Soc. Psychol. Bull. 28, 1265–1274. doi: 10.1177/01461672022812011

Buijs, F. N., León-Mercado, L., Guzmán-Ruiz, M., Guerrero-Vargas, N. N., Romo-Nava, F., and Buijs, R. M. (2016). The circadian system: a regulatory feedback network of periphery and brain. Physiology 31, 170–181. doi: 10.1152/physiol.00037.2015

Cai, W., Rambaud, J., Teboul, M., Masse, I., Benoit, G., Gustafsson, J. A., et al. (2008). Expression levels of estrogen receptor beta are modulated by components of the molecular clock. Mol. Cell. Biol. 28, 784–793. doi: 10.1128/mcb.00233-07

Cedernaes, J., Osler, M. E., Voisin, S., Broman, J. E., Vogel, H., Dickson, S. L., et al. (2015). Acute sleep loss induces tissue-specific epigenetic and transcriptional alterations to circadian clock genes in men. J. Clin. Endocrinol. Metab. 100, E1255–E1261. doi: 10.1210/JC.2015-2284

Chang, H. C., and Guarente, L. (2013). SIRT1 mediates central circadian control in the SCN by a mechanism that decays with aging. Cell 153, 1448–1460. doi: 10.1016/j.cell.2013.05.027

Chang, H., Yan, Q., Tang, J., Huang, J., Zhang, Y., Ma, Y., et al. (2017). Possible association between SIRT1 single nucleotide polymorphisms and predisposition to antisocial personality traits in chinese adolescents. Sci. Rep. 7:1099. doi: 10.1038/s41598-017-01208-2

Chrobak, A. A., Tereszko, A., Dembinska-Krajewska, D., Arciszewska, A., Siwek, M., Dudek, D., et al. (2017). Morningness-eveningness and affective temperaments assessed by the temperament evaluation of memphis, pisa and san diego-autoquestionnaire (TEMPS-A). Chronobiol. Int. 34, 57–65. doi: 10.1080/07420528.2016.1236806

Chung, S., Lee, E. J., Yun, S., Choe, H. K., Park, S. B., Son, H. J., et al. (2014). Impact of circadian nuclear receptor REV-ERBα on midbrain dopamine production and mood regulation. Cell 157, 858–868. doi: 10.1016/j.cell.2014.03.039

Coque, L., Mukherjee, S., Cao, J. L., Spencer, S., Marvin, M., Falcon, E., et al. (2011). Specific role of VTA dopamine neuronal firing rates and morphology in the reversal of anxiety-related, but not depression-related behavior in the ClockDelta19 mouse model of mania. Neuropsychopharmacology 36, 1478–1488. doi: 10.1038/npp.2011.33

Cote, K. A., McCormick, C. M., Geniole, S. N., Renn, R. P., and MacAulay, S. D. (2013). Sleep deprivation lowers reactive aggression and testosterone in men. Biol. Psychol. 92, 249–256. doi: 10.1016/j.biopsycho.2012.09.011

Coulombe, J. A., Reid, G. J., Boyle, M. H., and Racine, Y. (2011). Sleep problems, tiredness, and psychological symptoms among healthy adolescents. J. Pediatr. Psychol. 36, 25–35. doi: 10.1093/jpepsy/jsq028

da Cunha-Bang, S., Fisher, P. M., Hjordt, L. V., Perfalk, E., Beliveau, V., Holst, K., et al. (2018). Men with high serotonin 1B receptor binding respond to provocations with heightened amygdala reactivity. Neuroimage 166, 79–85. doi: 10.1016/j.neuroimage.2017.10.032

Dawson, A., King, V. M., Bentley, G. E., and Ball, G. F. (2001). Photoperiodic control of seasonality in birds. J. Biol. Rhythms 16, 365–380. doi: 10.1177/074873001129002079

Dibner, C., and Schibler, U. (2015). Circadian timing of metabolism in animal models and humans. J. Intern. Med. 277, 513–527. doi: 10.1111/joim.12347

Drummond, S. P., and Brown, G. G. (2001). The effects of total sleep deprivation on cerebral responses to cognitive performance. Neuropsychopharmacology 25, S68–S73. doi: 10.1016/s0893-133x(01)00325-6

Duffield, G. E. (2003). DNA microarray analyses of circadian timing: the genomic basis of biological time. J. Neuroendocrinol. 15, 991–1002. doi: 10.1046/j.1365-2826.2003.01082.x

Egawa, M., Inoue, S., Satoh, S., Takamura, Y., Nagai, K., and Nakagawa, H. (1993). Acute and chronic effects of VMH lesions on circadian rhythms in food intake and metabolites. Brain Res. Bull. 31, 293–299. doi: 10.1016/0361-9230(93)90220-6

Falkner, A. L., Grosenick, L., Davidson, T. J., Deisseroth, K., and Lin, D. (2016). Hypothalamic control of male aggression-seeking behavior. Nat. Neurosci. 19, 596–604. doi: 10.1038/nn.4264

Falkner, A. L., and Lin, D. (2014). Recent advances in understanding the role of the hypothalamic circuit during aggression. Front. Syst. Neurosci. 8:168. doi: 10.3389/fnsys.2014.00168

Fung, A. L., Raine, A., and Gao, Y. (2009). Cross-cultural generalizability of the reactive-proactive aggression questionnaire (RPQ). J. Pers. Assess. 91, 473–479. doi: 10.1080/00223890903088420

Gil-Lozano, M., Hunter, P. M., Behan, L. A., Gladanac, B., Casper, R. F., and Brubaker, P. L. (2016). Short-term sleep deprivation with nocturnal light exposure alters time-dependent glucagon-like peptide-1 and insulin secretion in male volunteers. Am. J. Physiol. Endocrinol. Metab. 310, E41–E50. doi: 10.1152/ajpendo.00298.2015

Gouin, J. P., Kiecolt-Glaser, J. K., Malarkey, W. B., and Glaser, R. (2008). The influence of anger expression on wound healing. Brain Behav. Immun. 22, 699–708. doi: 10.1016/j.bbi.2007.10.013

Grano, N., Vahtera, J., Virtanen, M., Keltikangas-Jarvinen, L., and Kivimaki, M. (2008). Association of hostility with sleep duration and sleep disturbances in an employee population. Int. J. Behav. Med. 15, 73–80. doi: 10.1080/10705500801929510

Grant, M. (2000). On The Humors. New York, NY: Routledge.

Green, M. J., and Phillips, M. L. (2004). Social threat perception and the evolution of paranoia. Neurosci. Biobehav. Rev. 28, 333–342. doi: 10.1016/j.neubiorev.2004.03.006

Gregory, A. M., Eley, T. C., O’Connor, T. G., and Plomin, R. (2004). Etiologies of associations between childhood sleep and behavioral problems in a large twin sample. J. Am. Acad. Child Adolesc. Psychiatry 43, 744–751. doi: 10.1097/01.chi/0000122798.47863.a5

Gunia, B. C., Barnes, C. M., and Sah, S. (2014). The morality of larks and owls: unethical behavior depends on chronotype as well as time of day. Psychol. Sci. 25, 2272–2274. doi: 10.1177/0956797614541989

Hakko, H., Räsänen, P., and Tiihonen, J. (1998). Seasonal variation in suicide occurrence in finland. Acta Psychiatr. Scand. 98, 92–97. doi: 10.1111/j.1600-0447.1998.tb10048.x

Hampp, G., and Albrecht, U. (2008). The circadian clock and mood-related behavior. Commun. Integr. Biol. 1, 1–3. doi: 10.4161/cib.1.1.6286

Hampp, G., Ripperger, J. A., Houben, T., Schmutz, I., Blex, C., Perreau-Lenz, S., et al. (2008). Regulation of monoamine oxidase A by circadian-clock components implies clock influence on mood. Curr. Biol. 18, 678–683. doi: 10.1016/j.cub.2008.04.012

Harrison, Y., and Horne, J. A. (2000). The impact of sleep deprivation on decision making: a review. J. Exp. Psychol. Appl. 6, 236–249. doi: 10.1037//1076-898x.6.3.236

Haukkala, A., Konttinen, H., Laatikainen, T., Kawachi, I., and Uutela, A. (2010). Hostility, anger control, and anger expression as predictors of cardiovascular disease. Psychosom. Med. 72, 556–562. doi: 10.1097/PSY.0b013e3181dbab87

Haynes, P. L., Bootzin, R. R., Smith, L., Cousins, J., Cameron, M., and Stevens, S. (2006). Sleep and aggression in substance-abusing adolescents: results from an integrative behavioral sleep-treatment pilot program. Sleep 29, 512–520.

Hicks, R. A., Moore, J. D., Hayes, C., Phillips, N., and Hawkins, J. (1979). REM sleep deprivation increases aggressiveness in male rats. Physiol. Behav. 22, 1097–1100. doi: 10.1016/0031-9384(79)90263-4

Hisler, G., and Krizan, Z. (2017). Sleepiness and behavioral risk-taking: do sleepy people take more or less risk? Behav. Sleep Med. 26, 1–14. doi: 10.1080/15402002.2017.1357122

Hood, S., and Amir, S. (2017). Neurodegeneration and the circadian clock. Front. Aging Neurosci. 9:170. doi: 10.3389/fnagi.2017.00170

Hsiang, S. M., Burke, M., and Miguel, E. (2013). Quantifying the influence of climate on human conflict. Science 341:1235367. doi: 10.1126/science.1235367

Hu, Y., Shmygelska, A., Tran, D., Eriksson, N., Tung, J. Y., and Hinds, D. A. (2016). GWAS of 89,283 individuals identifies genetic variants associated with self-reporting of being a morning person. Nat. Commun. 7:10448. doi: 10.1038/ncomms10448

Huang, W., Ramsey, K. M., Marcheva, B., and Bass, J. (2011). Circadian rhythms, sleep, and metabolism. J. Clin. Invest. 121, 2133–2141. doi: 10.1172/JCI46043

Hubbard, J. A., Smithmyer, C. M., Ramsden, S. R., Parker, E. H., Flanagan, K. D., Dearing, K. F., et al. (2002). Observational, physiological, and self-report measures of children’s anger: relations to reactive versus proactive aggression. Child Dev. 73, 1101–1118. doi: 10.1111/1467-8624.00460

Huhtaniemi, I., Martikainen, H., and Tapanainen, J. (1982). Large annual variation in photoperiodicity does not affect testicular endocrine function in man. Acta Endocrinol. (Copenh) 101, 105–107. doi: 10.1530/acta.0.1010105

Hwang, J. Y., Kang, S. G., Gwak, A. R., Park, J., and Lee, Y. J. (2016). The associations of morningness-eveningness with anger and impulsivity in the general population. Chronobiol. Int. 33, 200–209. doi: 10.3109/07420528.2015.1128947

Ingram, K. K., Ay, A., Kwon, S. B., Woods, K., Escobar, S., Gordon, M., et al. (2016). Molecular insights into chronotype and time-of-day effects on decision-making. Sci. Rep. 6:29392. doi: 10.1038/srep29392

Inouye, S. T. (1983). Does the ventromedial hypothalamic nucleus contain a self-sustained circadian oscillator associated with periodic feedings? Brain Res. 279, 53–63. doi: 10.1016/0006-8993(83)90162-2

Jager, J., O’Brien, W. T., Manlove, J., Krizman, E. N., Fang, B., Gerhart-Hines, Z., et al. (2014). Behavioral changes and dopaminergic dysregulation in mice lacking the nuclear receptor rev-erbalpha. Mol. Endocrinol. 28, 490–498. doi: 10.1210/me.2013-1351

Jasnow, A. M., Huhman, K. L., Bartness, T. J., and Demas, G. E. (2000). Short-day increases in aggression are inversely related to circulating testosterone concentrations in male siberian hamsters (Phodopus sungorus). Horm. Behav. 38, 102–110. doi: 10.1006/hbeh.2000.1604

Jones, S. E., Tyrrell, J., Wood, A. R., Beaumont, R. N., Ruth, K. S., Tuke, M. A., et al. (2016). Genome-wide association analyses in 128,266 individuals identifies new morningness and sleep duration loci. PLoS Genet. 12:e1006125. doi: 10.1371/journal.pgen.1006125

Kamphuis, J., Meerlo, P., Koolhaas, J. M., and Lancel, M. (2012). Poor sleep as a potential causal factor in aggression and violence. Sleep Med. 13, 327–334. doi: 10.1016/j.sleep.2011.12.006

Kayser, M. S., Mainwaring, B., Yue, Z., and Sehgal, A. (2015). Sleep deprivation suppresses aggression in Drosophila. Elife 4:e07643. doi: 10.7554/elife.07643

Kempes, M., Matthys, W., de Vries, H., and van Engeland, H. (2005). Reactive and proactive aggression in children–a review of theory, findings and the relevance for child and adolescent psychiatry. Eur. Child Adolesc. Psychiatry 14, 11–19. doi: 10.1007/s00787-005-0432-4

Kikuya, M., Hozawa, A., Ohokubo, T., Tsuji, I., Michimata, M., Matsubara, M., et al. (2000). Prognostic significance of blood pressure and heart rate variabilities: the ohasama study. Hypertension 36, 901–906. doi: 10.1161/01.hyp.36.5.901

Killgore, W. D. (2010). Effects of sleep deprivation on cognition. Prog. Brain Res. 185, 105–129. doi: 10.1016/B978-0-444-53702-7.00007-5

Killgore, W. D., Kahn-Greene, E. T., Lipizzi, E. L., Newman, R. A., Kamimori, G. H., and Balkin, T. J. (2008). Sleep deprivation reduces perceived emotional intelligence and constructive thinking skills. Sleep Med. 9, 517–526. doi: 10.1016/j.sleep.2007.07.003

Kishi, T., Fukuo, Y., Kitajima, T., Okochi, T., Yamanouchi, Y., Kinoshita, Y., et al. (2011). SIRT1 gene, schizophrenia and bipolar disorder in the japanese population: an association study. Genes Brain Behav. 10, 257–263. doi: 10.1111/j.1601-183x.2010.00661.x

Klukowski, M., and Nelson, C. E. (1998). The challenge hypothesis and seasonal changes in aggression and steroids in male northern fence lizards (Sceloporus undulatus hyacinthinus). Horm. Behav. 33, 197–204. doi: 10.1006/hbeh.1998.1449

Kouchaki, M., and Smith, I. H. (2014). The morning morality effect: the influence of time of day on unethical behavior. Psychol. Sci. 25, 95–102. doi: 10.1177/0956797613498099

Lamont, E. W., Robinson, B., Stewart, J., and Amir, S. (2005). The central and basolateral nuclei of the amygdala exhibit opposite diurnal rhythms of expression of the clock protein Period2. Proc. Natl. Acad. Sci. U S A 102, 4180–4184. doi: 10.1073/pnas.0500901102

Laredo, S. A., Villalon Landeros, R., Dooley, J. C., Steinman, M. Q., Orr, V., Silva, A. L., et al. (2013). Nongenomic effects of estradiol on aggression under short day photoperiods. Horm. Behav. 64, 557–565. doi: 10.1016/j.yhbeh.2013.06.002

Lauritsen, J. L., and White, N. (2014). Seasonal Patterns in Criminal Victimization Trends. (No. NCJ245959). Washington, DC: U.S. Department of Justice.

Lee, J. Y., Ahn, K., Jang, B. G., Park, S. H., Kang, H. J., Heo, J. I., et al. (2009). Nicotinamide reduces dopamine in postnatal hypothalamus and causes dopamine-deficient phenotype. Neurosci. Lett. 461, 163–166. doi: 10.1016/j.neulet.2009.06.005

Lee, H., Kim, D. W., Remedios, R., Anthony, T. E., Chang, A., Madisen, L., et al. (2014). Scalable control of mounting and attack by Esr1+ neurons in the ventromedial hypothalamus. Nature 509, 627–632. doi: 10.1038/nature13169

Leggett, A. N., Zarit, S. H., Kim, K., Almeida, D. M., and Klein, L. C. (2015). Depressive mood, anger and daily cortisol of caregivers on high- and low-stress days. J. Gerontol. B Psychol. Sci. Soc. Sci. 70, 820–829. doi: 10.1093/geronb/gbu070

Licklider, J. C., and Bunch, M. E. (1946). Effects of enforced wakefulness upon the growth and the maze-learning performance of white rats. J. Comp. Psychol. 39, 339–350. doi: 10.1037/h0060623

Lincoln, G. A., Clarke, I. J., Hut, R. A., and Hazlerigg, D. G. (2006). Characterizing a mammalian circannual pacemaker. Science 314, 1941–1944. doi: 10.1126/science.1132009

Linden, W., Klassen, K., and Phillips, M. (2008). Can psychological factors account for a lack of nocturnal blood pressure dipping? Ann. Behav. Med. 36, 253–258. doi: 10.1007/s12160-008-9069-0

Lynch, E. W., Coyle, C. S., and Stevenson, T. J. (2017). Photoperiodic and ovarian steroid regulation of histone deacetylase 1, 2, and 3 in siberian hamster (Phodopus sungorus) reproductive tissues. Gen. Comp. Endocrinol. 246, 194–199. doi: 10.1016/j.ygcen.2016.12.008

Malek, Z. S., Dardente, H., Pevet, P., and Raison, S. (2005). Tissue-specific expression of tryptophan hydroxylase mRNAs in the rat midbrain: anatomical evidence and daily profiles. Eur. J. Neurosci. 22, 895–901. doi: 10.1111/j.1460-9568.2005.04264.x

Marino, M. D., Bourdélat-Parks, B. N., Cameron Liles, L., and Weinshenker, D. (2005). Genetic reduction of noradrenergic function alters social memory and reduces aggression in mice. Behav. Brain Res. 161, 197–203. doi: 10.1016/j.bbr.2005.02.005

Mathias, C. W., Stanford, M. S., Marsh, D. M., Frick, P. J., Moeller, F. G., Swann, A. C., et al. (2007). Characterizing aggressive behavior with the impulsive/premeditated aggression scale among adolescents with conduct disorder. Psychiatry Res. 151, 231–242. doi: 10.1016/j.psychres.2006.11.001

May, C. P. (1999). Synchrony effects in cognition: the costs and a benefit. Psychon. Bull. Rev. 6, 142–147. doi: 10.3758/bf03210822

Michael, R. P., and Zumpe, D. (1978). Annual cycles of aggression and plasma testosterone in captive male rhesus monkeys. Psychoneuroendocrinology 3, 217–220. doi: 10.1016/0306-4530(78)90011-2

Michael, R. P., and Zumpe, D. (1983). Annual rhythms in human violence and sexual aggression in the united states and the role of temperature. Soc. Biol. 30, 263–278. doi: 10.1080/19485565.1983.9988541

Michael, R. P., and Zumpe, D. (1986). An annual rhythm in the battering of women. Am. J. Psychiatry 143, 637–640. doi: 10.1176/ajp.143.5.637

Miczek, K. A., de Almeida, R. M., Kravitz, E. A., Rissman, E. F., de Boer, S. F., and Raine, A. (2007). Neurobiology of escalated aggression and violence. J. Neurosci. 27, 11803–11806. doi: 10.1523/JNEUROSCI.3500-07.2007

Mikics, E., Barsy, B., and Haller, J. (2007). The effect glucocorticoids on aggressiveness in established colonies of rats. Psychoneuroendocrinology 32, 160–170. doi: 10.1016/j.psyneuen.2006.12.002

Mistlberger, R. E., and Skene, D. J. (2004). Social influences on mammalian circadian rhythms: animal and human studies. Biol. Rev. Camb. Philos. Soc. 79, 533–556. doi: 10.1017/s1464793103006353

Mitchell, R. B., and Kelly, J. (2006). Behavior, neurocognition and quality-of-life in children with sleep-disordered breathing. Int. J. Pediatr. Otorhinolaryngol. 70, 395–406. doi: 10.1016/j.ijporl.2005.10.020

Mohawk, J. A., Green, C. B., and Takahashi, J. S. (2012). Central and peripheral circadian clocks in mammals. Annu. Rev. Neurosci. 35, 445–462. doi: 10.1146/annurev-neuro-060909-153128

Mukai, M., Replogle, K., Drnevich, J., Wang, G., Wacker, D., Band, M., et al. (2009). Seasonal differences of gene expression profiles in song sparrow (melospiza melodia) hypothalamus in relation to territorial aggression. PLoS One 4:e8182. doi: 10.1371/journal.pone.0008182

Muschett, G., Umbers, K. D., and Herberstein, M. E. (2017). Within-season variability of fighting behaviour in an australian alpine grasshopper. PLoS One 12:e0171697. doi: 10.1371/journal.pone.0171697

Nakahata, Y., Kaluzova, M., Grimaldi, B., Sahar, S., Hirayama, J., Chen, D., et al. (2008). The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 134, 329–340. doi: 10.1016/j.cell.2008.07.002

Nakao, N., Ono, H., Yamamura, T., Anraku, T., Takagi, T., Higashi, K., et al. (2008). Thyrotrophin in the pars tuberalis triggers photoperiodic response. Nature 452, 317–322. doi: 10.1038/nature06738

Oberle, E., McLachlan, K., Catherine, N. L. A., Brain, U., Schonert-Reichl, K. A., Weinberg, J., et al. (2017). Afternoon cortisol provides a link between self-regulated anger and peer-reported aggression in typically developing children in the school context. Dev. Psychobiol. 59, 688–695. doi: 10.1002/dev.21522

Ogawa, S., Chester, A. E., Hewitt, S. C., Walker, V. R., Gustafsson, J. A., Smithies, O., et al. (2000). Abolition of male sexual behaviors in mice lacking estrogen receptors alpha and beta (alpha beta ERKO). Proc. Natl. Acad. Sci. U S A 97, 14737–14741. doi: 10.1073/pnas.250473597

Ono, H., Hoshino, Y., Yasuo, S., Watanabe, M., Nakane, Y., Murai, A., et al. (2008). Involvement of thyrotropin in photoperiodic signal transduction in mice. Proc. Natl. Acad. Sci. U S A 105, 18238–18242. doi: 10.1073/pnas.0808952105

Ono, T., Sasaki, K., and Shibata, R. (1987). Diurnal- and behaviour-related activity of ventromedial hypothalamic neurones in freely behaving rats. J. Physiol. 394, 201–220. doi: 10.1113/jphysiol.1987.sp016866

Oster, H., Maronde, E., and Albrecht, U. (2002). The circadian clock as a molecular calendar. Chronobiol. Int. 19, 507–516. doi: 10.1081/cbi-120004210

Park, C. I., An, S. K., Kim, H. W., Koh, M. J., Namkoong, K., Kang, J. I., et al. (2015). Relationships between chronotypes and affective temperaments in healthy young adults. J. Affect. Disord. 175, 256–259. doi: 10.1016/j.jad.2015.01.004

Paul, M. J., Zucker, I., and Schwartz, W. J. (2008). Tracking the seasons: the internal calendars of vertebrates. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363, 341–361. doi: 10.1098/rstb.2007.2143

Pavek, K., and Taube, A. (2009). Personality characteristics influencing determinacy of day and night blood pressure and heart rate. Blood Press. 18, 30–35. doi: 10.1080/08037050902812648

Perrone, R., Macadar, O., and Silva, A. (2009). Social electric signals in freely moving dyads of brachyhypopomus pinnicaudatus. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 195, 501–514. doi: 10.1007/s00359-009-0427-6

Pilcher, J. J., and Huffcutt, A. I. (1996). Effects of sleep deprivation on performance: a meta-analysis. Sleep 19, 318–326. doi: 10.1093/sleep/19.4.318

Radstaak, M., Geurts, S. A., Beckers, D. G., Brosschot, J. F., and Kompier, M. A. (2014). Work stressors, perseverative cognition and objective sleep quality: a longitudinal study among dutch helicopter emergency medical service (HEMS) pilots. J. Occup. Health 56, 469–477. doi: 10.1539/joh.14-0118-OA

Rajaratnam, S. M., Barger, L. K., Lockley, S. W., Shea, S. A., Wang, W., Landrigan, C. P., et al. (2011). Sleep disorders, health, and safety in police officers. JAMA 306, 2567–2578. doi: 10.1001/jama.2011.1851

Rendon, N. M., Rudolph, L. M., Sengelaub, D. R., and Demas, G. E. (2015). The agonistic adrenal: melatonin elicits female aggression via regulation of adrenal androgens. Proc. Biol. Sci. 282:20152080. doi: 10.1098/rspb.2015.2080

Rosell, D. R., and Siever, L. J. (2015). The neurobiology of aggression and violence. CNS Spectr. 20, 254–279. doi: 10.1017/S109285291500019X

Rotton, J., and Cohn, E. G. (1999). Errors of commission and omission: comment on anderson anderson’s (1998) “temperature and aggression”. Psychol. Rep. 85, 611–620. doi: 10.2466/pr0.85.6.611-620

Roybal, K., Theobold, D., Graham, A., DiNieri, J. A., Russo, S. J., Krishnan, V., et al. (2007). Mania-like behavior induced by disruption of CLOCK. Proc. Natl. Acad. Sci. U S A 104, 6406–6411. doi: 10.1073/pnas.0609625104

Ruby, D. E. (1978). Seasonal changes in the territorial behavior of the iguanid lizard sceloperus jarrovi. Copeia 1978, 430–438. doi: 10.2307/1443607

Sasaki, H., Hattori, Y., Ikeda, Y., Kamagata, M., Iwami, S., Yasuda, S., et al. (2016). Forced rather than voluntary exercise entrains peripheral clocks via a corticosterone/noradrenaline increase in PER2::LUC mice. Sci. Rep. 6:27607. doi: 10.1038/srep27607

Sato, T., Matsumoto, T., Kawano, H., Watanabe, T., Uematsu, Y., Sekine, K., et al. (2004). Brain masculinization requires androgen receptor function. Proc. Natl. Acad. Sci. U S A 101, 1673–1678. doi: 10.1073/pnas.0305303101

Schibler, U., Gotic, I., Saini, C., Gos, P., Curie, T., Emmenegger, Y., et al. (2015). Clock-talk: interactions between central and peripheral circadian oscillators in mammals. Cold Spring Harb. Symp. Quant. Biol. 80, 223–232. doi: 10.1101/sqb.2015.80.027490

Schlarb, A. A., Sopp, R., Ambiel, D., and Grunwald, J. (2014). Chronotype-related differences in childhood and adolescent aggression and antisocial behavior–a review of the literature. Chronobiol. Int. 31, 1–16. doi: 10.3109/07420528.2013.829846

Schreiber, G., Avissar, S., Tzahor, Z., Barak-Glantz, I., and Grisaru, N. (1997). Photoperiodicity and annual rhythms of wars and violent crimes. Med. Hypotheses 48, 89–96. doi: 10.1016/s0306-9877(97)90029-3

Segall, L. A., and Amir, S. (2010). Exogenous corticosterone induces the expression of the clock protein, PERIOD2, in the oval nucleus of the bed nucleus of the stria terminalis and the central nucleus of the amygdala of adrenalectomized and intact rats. J. Mol. Neurosci. 42, 176–182. doi: 10.1007/s12031-010-9375-4

Shih, J. C. (2004). Cloning, after cloning, knock-out mice, and physiological functions of MAO A and B. Neurotoxicology 25, 21–30. doi: 10.1016/s0161-813x(03)00112-8

Smith, R. P., Coward, R. M., Kovac, J. R., and Lipshultz, L. I. (2013). The evidence for seasonal variations of testosterone in men. Maturitas 74, 208–212. doi: 10.1016/j.maturitas.2012.12.003

Smith, T. W., Glazer, K., Ruiz, J. M., and Gallo, L. C. (2004). Hostility, anger, aggressiveness and, coronary heart disease: an interpersonal perspective on personality, emotion and health. J. Pers. 72, 1217–1270. doi: 10.1111/j.1467-6494.2004.00296.x

Soma, K. K. (2006). Testosterone and aggression: berthold, birds and beyond. J. Neuroendocrinol. 18, 543–551. doi: 10.1111/j.1365-2826.2006.01440.x

Spanagel, R., Pendyala, G., Abarca, C., Zghoul, T., Sanchis-Segura, C., Magnone, M. C., et al. (2005). The clock gene Per2 influences the glutamatergic system and modulates alcohol consumption. Nat. Med. 11, 35–42. doi: 10.1038/nm1163

Sperry, T. S., Wacker, D. W., and Wingfield, J. C. (2010). The role of androgen receptors in regulating territorial aggression in male song sparrows. Horm. Behav. 57, 86–95. doi: 10.1016/j.yhbeh.2009.09.015

Spiteri, T., Musatov, S., Ogawa, S., Ribeiro, A., Pfaff, D. W., and Agmo, A. (2010). The role of the estrogen receptor alpha in the medial amygdala and ventromedial nucleus of the hypothalamus in social recognition, anxiety and aggression. Behav. Brain Res. 210, 211–220. doi: 10.1016/j.bbr.2010.02.033

Stephan, F. K. (2002). The “other” circadian system: food as a Zeitgeber. J. Biol. Rhythms 17, 284–292. doi: 10.1177/074873040201700402

Stevenson, T. J., and Prendergast, B. J. (2015). Photoperiodic time measurement and seasonal immunological plasticity. Front. Neuroendocrinol. 37, 76–88. doi: 10.1016/j.yfrne.2014.10.002

Suzuki, H., and Lucas, L. R. (2015). Neurochemical correlates of accumbal dopamine D2 and amygdaloid 5-HT1B receptor densities on observational learning of aggression. Cogn. Affect. Behav. Neurosci. 15, 460–474. doi: 10.3758/s13415-015-0337-8

Takahashi, A., and Miczek, K. A. (2014). Neurogenetics of aggressive behavior: studies in rodents. Curr. Top. Behav. Neurosci. 17, 3–44. doi: 10.1007/7854_2013_263

Taylor, N. D., Fireman, G. D., and Levin, R. (2013). Trait hostility, perceived stress, and sleep quality in a sample of normal sleepers. Sleep Disord. 2013:735812. doi: 10.1155/2013/735812

Trainor, B. C., Lin, S., Finy, M. S., Rowland, M. R., and Nelson, R. J. (2007). Photoperiod reverses the effects of estrogens on male aggression via genomic and nongenomic pathways. Proc. Natl. Acad. Sci. U S A 104, 9840–9845. doi: 10.1073/pnas.0701819104

Ueda, H. R., Matsumoto, A., Kawamura, M., Iino, M., Tanimura, T., and Hashimoto, S. (2002). Genome-wide transcriptional orchestration of circadian rhythms in Drosophila. J. Biol. Chem. 277, 14048–14052. doi: 10.1074/jbc.C100765200

Vgontzas, A. N., Zoumakis, E., Bixler, E. O., Lin, H. M., Follett, H., Kales, A., et al. (2004). Adverse effects of modest sleep restriction on sleepiness, performance, and inflammatory cytokines. J. Clin. Endocrinol. Metab. 89, 2119–2126. doi: 10.1210/jc.2003-031562

Volicer, L., Harper, D. G., Manning, B. C., Goldstein, R., and Satlin, A. (2001). Sundowning and circadian rhythms in Alzheimer’s disease. Am. J. Psychiatry 158, 704–711. doi: 10.1176/appi.ajp.158.5.704

Wacker, D. W., Khalaj, S., Jones, L. J., Champion, T. L., Davis, J. E., Meddle, S. L., et al. (2016). Dehydroepiandrosterone heightens aggression and increases androgen receptor and aromatase mRNA expression in the brain of a male songbird. J. Neuroendocrinol. 28:12. doi: 10.1111/jne.12443

Waltes, R., Chiocchetti, A. G., and Freitag, C. M. (2016). The neurobiological basis of human aggression: a review on genetic and epigenetic mechanisms. Am. J. Med. Genet. B Neuropsychiatr. Genet. 171, 650–675. doi: 10.1002/ajmg.b.32388

Wang, X., Greer, J., Porter, R. R., Kaur, K., and Youngstedt, S. D. (2016). Short-term moderate sleep restriction decreases insulin sensitivity in young healthy adults. Sleep Health 2, 63–68. doi: 10.1016/j.sleh.2015.11.004

Waters, W. F., Adams, S. G. Jr., Binks, P., and Varnado, P. (1993). Attention, stress and negative emotion in persistent sleep-onset and sleep-maintenance insomnia. Sleep 16, 128–136. doi: 10.1093/sleep/16.2.128

Webb, W. B. (1962). Some effects of prolonged sleep deprivation on the hooded rat. J. Comp. Physiol. Psychol. 55, 791–793. doi: 10.1037/h0042196

Weber, M., Lauterburg, T., Tobler, I., and Burgunder, J. M. (2004). Circadian patterns of neurotransmitter related gene expression in motor regions of the rat brain. Neurosci. Lett. 358, 17–20. doi: 10.1016/j.neulet.2003.12.053

Wilson, A. P., and Boelkins, R. C. (1970). Evidence for seasonal variation in aggressive behaviour by macaca mulatta. Anim. Behav. 18, 719–724. doi: 10.1016/0003-3472(70)90017-5

Wingfield, J. C. (1994). Regulation of territorial behavior in the sedentary song sparrow, melospiza melodia morphna. Horm. Behav. 28, 1–15. doi: 10.1006/hbeh.1994.1001

Wingfield, J. C. (2012). The challenge hypothesis: behavioral economics to neurogenomics. J. Ornithol. 153, 85–96. doi: 10.1007/s10336-012-0857-8

Woo, J. M., Okusaga, O., and Postolache, T. T. (2012). Seasonality of suicidal behavior. Int. J. Environ. Res. Public Health 9, 531–547. doi: 10.3390/ijerph9020531

Yesavage, J. A., Friedman, L., Ancoli-Israel, S., Bliwise, D., Singer, C., Vitiello, M. V., et al. (2003). Development of diagnostic criteria for defining sleep disturbance in alzheimer’s disease. J. Geriatr. Psychiatry Neurol. 16, 131–139. doi: 10.1177/0891988703255684

Yoo, S. S., Gujar, N., Hu, P., Jolesz, F. A., and Walker, M. P. (2007). The human emotional brain without sleep—a prefrontal amygdala disconnect. Curr. Biol. 17, R877–R878. doi: 10.1016/j.cub.2007.08.007
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top