Clayer, F., Moritz, A., Gelinas, Yves, Tessier, A. and Gobeil, C. (2018) Modeling the carbon isotope signatures of methane and dissolved inorganic carbon to unravel mineralization pathways in boreal lake sediments. Geochimica et Cosmochimica Acta . ISSN 00167037 (In Press)
Preview |
Text (application/pdf)
1MBgelinas-gca-2018.pdf - Accepted Version Available under License Spectrum Terms of Access. |
Official URL: http://dx.doi.org/10.1016/j.gca.2018.02.012
Abstract
Vertical profiles of the concentration and isotopic composition (δ13C) of methane (CH4) and dissolved inorganic carbon (DIC), as well as of ancillary parameters, were obtained in the top 25 cm sediment column of a seasonally anoxic basin from an oligotrophic boreal lake. Modeling the profiles of CH4 and DIC concentrations and those of their δ13C signatures with reaction-transport equations allowed us to determine the organic matter (OM) degradation rates according to various reactions and to constrain the in situ isotopic fractionation factors and diffusivity coefficients of CH4 and DIC. This exercise reveals inter alia that (i) CH4 production occurs below 5 cm depth, with the highest production rate between 5 and 7.5 cm depth, (ii) all CH4 is produced through hydrogenotrophy, and (iii) methanogenesis yields a production rate of CH4 about three times greater than that of DIC. This latter observation indicates either that fermentation of OM is not the exclusive source of H2 sustaining hydrogenotrophy, or that the commonly assumed model molecule CH2O does not adequately represent the fermenting OM, since its fermentation yields identical rates of CH4 and DIC production. The porewater profiles of Fe and View the MathML source suggest that some H2 may be produced during the reoxidation of reduced sulfur by Fe(III), but the rate of H2 production via this process, if active, would be insignificant in comparison to that required to sustain the estimated rate of hydrogenotrophy. We deduce that the imbalance between CH4 and DIC production rates is rather due to the fermentation of organic substrates that are more reduced than CH2O, i.e., having a negative average carbon oxidation state (COS). From the constraints on reaction rates and on fermentation pathways imposed by the δ13C data, we infer that the organic substrate fermenting between 5 and 7.5 cm depth should have a COS of −1.87. We thus submit that CH4 is produced in the sediments of the seasonally anoxic basin of our boreal lake through hydrogenotrophy coupled to the fermentation of reduced organic substrates that can be represented by a mixture of fatty acids (e.g. C16H32O2; COS of −1.75) and fatty alcohols (e.g., C16H34O; COS of −2.00). This study emphasizes the importance of characterizing the sedimentary OM undergoing mineralization in order to improve diagenetic model predictions of CH4 cycling in boreal lakes and of its significance in climate change.
Divisions: | Concordia University > Faculty of Arts and Science > Chemistry and Biochemistry |
---|---|
Item Type: | Article |
Refereed: | Yes |
Authors: | Clayer, F. and Moritz, A. and Gelinas, Yves and Tessier, A. and Gobeil, C. |
Journal or Publication: | Geochimica et Cosmochimica Acta |
Date: | 13 February 2018 |
Funders: |
|
Digital Object Identifier (DOI): | 10.1016/j.gca.2018.02.012 |
Keywords: | Methane; organic matter mineralization; reaction-transport modeling; carbon isotopes; boreal lake; sediment porewater; early diagenesis |
ID Code: | 983509 |
Deposited By: | Michael Biron |
Deposited On: | 16 Feb 2018 17:23 |
Last Modified: | 14 Feb 2020 01:00 |
References:
Alfaro-De La Torre M. C. (2001) Géochimie du cadmium dans un lac oligotrophe acide. Ph.D. thesis, INRS-EAU, Université du Québec.Aller R. C. (2014) Sedimentary diagenesis, depositional environments, and benthic fluxes. In Treatise on Geochemistry (eds. Holland H. and Turekian K.) 2nd ed., Elsevier, Oxford. pp. 293-334.
M.J. Alperin, W.S. Reeburgh, M.J. Whiticar Carbon and hydrogen isotope fraction resulting from anaerobic methane oxidation Global Biogeochem. Cycles, 2 (1988), pp. 279–288
M.J. Alperin, D.B. Albert, C.S. Martens Seasonal variations in production and consumption rates of dissolved organic carbon in an organic-rich coastal sediment Geochim. Cosmochim. Acta, 58 (1994), pp. 4909–4930
S. Arndt, B.B. Jørgensen, D.E. LaRowe, J.J. Middelburg, R.D. Pancost, P. Regnier Quantifying the degradation of organic matter in marine sediments: A review and synthesis Earth-Sci. Rev., 123 (2013), pp. 53–86
E.T. Arning, W. van Berk, H.-M. Schulz Fate and behaviour of marine organic matter during burial of anoxic sediments: Testing CH2O as generalized input parameter in reaction transport models Mar. Chem., 178 (2016), pp. 8–21
J.A. Baldock, C.A. Masiello, Y. Gélinas, J.I. Hedges Cycling and composition of organic matter in terrestrial and marine ecosystems Mar. Chem., 92 (2004), pp. 39–64
J.F. Barker, P. Fritz Carbon isotope fractionation during microbial methane oxidation Nature, 293 (1981), pp. 289–291
D. Bastviken, J. Cole, M. Pace, L. Tranvik Methane emissions from lakes: Dependence of lake characteristics, two regional assessments, and a global estimate Global Biogeochem, Cycles (2004), p. 18
W.M. Berelson, M. Prokopenko, F.J. Sansone, A.W. Graham, J. McManus, J.M. Bernhard Anaerobic diagenesis of silica and carbon in continental margin sediments: Discrete zones of TCO2 production Geochim. Cosmochim. Acta, 69 (2005), pp. 4611–4629
P. Berg, N. Risgaard-Petersen, S. Rysgaard Interpretation of measured concentration profiles in sediment pore water Limnol. Oceanogr., 43 (1998), pp. 1500–1510
R.A. Berner Early Diagenesis: A Theoretical Approach Princeton University Press, Princeton, New Jersey (1980)
N.E. Blair, J.W.D. Carter The carbon isotope biogeochemistry of acetate from a methanogenic marine sediment Geochim. Cosmochim. Acta, 56 (1992), pp. 1247–1258
W.S. Borowski, C.K. Paull, W. Ussler Carbon cycling within the upper methanogenic zone of continental rise sediments; An example from the methane-rich sediments overlying the Blake Ridge gas hydrate deposits Mar. Chem., 57 (1997), pp. 299–311
Y. Bottinga Calculation of fractionation factors for carbon and oxygen isotopic exchange in the system calcite-carbon dioxide-water J. Phys. Chem., 72 (1968), pp. 800–808
Bottrell S.H., Parkes R. J., Cragg B. A. and Raiswell R. (2000) Isotopic evidence for anoxic pyrite oxidation and stimulation of bacterial sulphate reduction in marine sediments. J. Geol. Soc. (London, U. K.) 157, 711-714.
B.P. Boudreau Diagenetic Models and their Implementation: Modelling Transport and Reactions in Aquatic Sediments (1st ed.)Springer, Berlin (1997)
H. Brandl, K.W. Hanselmann, R. Bachofen, J. Piccard Small-scale patchiness in the chemistry and microbiology of sediments in Lake Geneva Switzerland. J. Gen. Microb., 139 (1993), pp. 2271–2275
S.D. Bridgham, H. Cadillo-Quiroz, J.K. Keller, Q. Zhuang Methane emissions from wetlands: Biogeochemical, microbial, and modeling perspectives from local to global scales Glob. Chang. Biol., 19 (2013), pp. 1325–1346
D.J. Burdige, Geochemistry of Marine Sediments: Princeton University Press, Princeton and Oxford (2006)
D.J. Burdige Preservation of organic matter in marine sediments: Controls, mechanisms, and an imbalance in sediment organic carbon budgets? Chem. Rev., 107 (2007), pp. 467–485
D.J. Burdige, T. Komada Anaerobic oxidation of methane and the stoichiometry of remineralization processes in continental margin sediments Limnol. Oceanogr., 56 (2011), pp. 1781–1796
R.W. Canavan, C.P. Slomp, P. Jourabchi, P. Van Cappellen, A.M. Laverman, G.A. van den Berg Organic matter mineralization in sediment of a coastal freshwater lake and response to salinization Geochim. Cosmochim. Acta, 70 (2006), pp. 2836–2855
E.A. Canuel, C.S. Martens Reactivity of recently deposited organic matter: Degradation of lipid compounds near the sediment-water interface Geochim. Cosmochim. Acta, 60 (1996), pp. 1793–1806
R. Carignan, F. Rapin, A. Tessier Sediment porewater sampling for metal analysis–a comparison of techniques Geochim. Cosmochim. Acta, 49 (1985), pp. 2493–2497
J.P. Chanton The effect of gas transport on the isotope signature of methane in wetlands Org. Geochem., 36 (2005), pp. 753–768
Chanton J. P., Fields D. and Hines M. E. (2006) Controls on the hydrogen isotopic composition of biogenic methane from high-latitude terrestrial wetlands. J. Geophys. Res.: Biogeosci. 111.
A. Chappaz, C. Gobeil, A. Tessier Geochemical and anthropogenic enrichments of Mo in sediments from perennially oxic and seasonally anoxic lakes in Eastern Canada Geochim. Cosmochim. Acta, 72 (2008), pp. 170–184
L.S. Chasar, J.P. Chanton, P.H. Glaser, D.I. Siegel Methane concentration and stable isotope distribution as evidence of rhizospheric processes: Comparison of a fen and bog in the Glacial Lake Agassiz Peatland complex Annals of Botany, 86 (2000), pp. 655–663
F. Clayer, C. Gobeil, A. Tessier Rates and pathways of sedimentary organic matter mineralization in two basins of a boreal lake: Emphasis on methanogenesis and methanotrophy Limnol, Oceanogr (2016)
R. Conrad Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments FEMS Microbiol. Ecol., 28 (1999), pp. 193–202
R. Conrad Quantification of methanogenic pathways using stable carbon isotopic signatures: a review and a proposal Org. Geochem., 36 (2005), pp. 739–752
R. Conrad, P. Claus, P. Casper Characterization of stable isotope fractionation during methane production in the sediment of a eutrophic lake, Lake Dagow Germany. Limnol. Oceanogr., 54 (2009), pp. 457–471
R. Conrad, P. Claus, P. Casper Stable isotope fractionation during the methanogenic degradation of organic matter in the sediment of an acidic bog lake, Lake Grosse Fuchskuhle Limnol. Oceanogr., 55 (2010), pp. 1932–1942
R. Conrad, M. Klose, Q. Yuan, Y. Lu, A. Chidthaisong Stable carbon isotope fractionation, carbon flux partitioning and priming effects in anoxic soils during methanogenic degradation of straw and soil organic matter Soil Biol. Biochem., 49 (2012), pp. 193–199
R. Conrad, P. Claus, A. Chidthaisong, Y. Lu, Scavino A. Fernandez, Y. Liu, R. Angel, P.E. Galand, P. Casper, F. Guerin, A. Enrich-Prast Stable carbon isotope biogeochemistry of propionate and acetate in methanogenic soils and lake sediments Org. Geochem., 73 (2014), pp. 1–7
Corbett J. E., Tfaily M. M., Burdige D. J., Glaser P. H. and Chanton J. P. (2015) The relative importance of methanogenesis in the decomposition of organic matter in northern peatlands. J. Geophys. Res.: Biogeosci. 120, 280-293.
J.E. Corbett, M.M. Tfaily, D.J. Burdige, W.T. Cooper, P.H. Glaser, J.P. Chanton Partitioning pathways of CO2 production in peatlands with stable carbon isotopes Biogeochemistry, 114 (2013), pp. 327–340
R.M. Couture, C. Gobeil, A. Tessier Chronology of atmospheric deposition of arsenic inferred from reconstructed sedimentary records Environ. Sci. Technol., 42 (2008), pp. 6508–6513
R.-M. Couture, R. Fischer, R. Van Cappellen, C. Gobeil Non-steady state diagenesis of organic and inorganic sulfur in lake sediments Geochim. Cosmochim. Acta, 194 (2016), pp. 15–33
P.A. Cranwell Diagenesis of free and bound lipids in terrestrial detritus deposited in a lacustrine sediment Org. Geochem., 3 (1981), pp. 79–89
J.A. Downing, L.C. Rath Spatial patchiness in the lacustrine sedimentary environment Limnol. Oceanogr., 33 (1988), pp. 447–458
Z. Duan, S. Mao A thermodynamic model for calculating methane solubility, density and gas phase composition of methane-bearing aqueous fluids from 273 to 523K and from 1 to 2000bar Geochim. Cosmochim. Acta, 70 (2006), pp. 3369–3386
K. Emrich, D.H. Ehhalt, J.C. Vogel Carbon isotope fractionation during the precipitation of calcium carbonate Earth Planet. Sci. Lett., 8 (1970), pp. 363–371
J.W. Farrington, S.M. Henrichs, R. Anderson Fatty wids and Pb210 geochronology of a sediment core from Buzzards Bay Massachusetts. Geochim. Cosmochim. Acta, 41 (1977), pp. 289–296
Faure G. (1998) Principles and Applications of Geochemistry. 2nd ed., Prentice Hall.
A. Fey, P. Claus, R. Conrad Temporal change of 13C-isotope signatures and methanogenic pathways in rice field soil incubated anoxically at different temperatures Geochim. Cosmochim. Acta, 68 (2004), pp. 293–306
P.E. Galand, K. Yrjälä, R. Conrad Stable carbon isotope fractionation during methanogenesis in three boreal peatland ecosystems Biogeosciences, 7 (2010), pp. 3893–3900
J.T. Gelwicks, J.B. Risatti, J.M. Hayes Carbon Isotope Effects Associated with Aceticlastic Methanogenesis Appl. Environ. Microbiol., 60 (1994), pp. 467–472
J.D. Happell, J.P. Chanton, W.J. Showers Methane transfer across the water-air interface in stagnant wooded swamps of Florida: Evaluation of mass-transfer coefficients and isotopic fractionation Limnol. Oceanogr., 40 (1995), pp. 290–298
L. Hare, R. Carignan, M.A. Huerta-Diaz A field study of metal toxicity and accumulation by benthic invertebrates; Implications for the acid-volatile sulfide (AVS) model Limnol. Oceanogr., 39 (1994), pp. 1653–1668
H.R. Harvey, S.A. Macko Kinetics of phytoplankton decay during simulated sedimentation: Changes in lipids under oxic and anoxic conditions Org. Geochem., 27 (1997), pp. 129–140
W. Hayduk, H. Laudie Prediction of diffusion coefficients for nonelectrolytes in dilute aqueous solutions AlChE J., 20 (1974), pp. 611–615
J.I. Hedges, J.M. Oades Comparative organic geochemistries of soils and marine sediments Org. Geochem., 27 (1997), pp. 319–361
J.I. Hedges, J.A. Baldock, Y. Gelinas, C. Lee, M.L. Peterson, S.G. Wakeham The biochemical and elemental compositions of marine plankton: A NMR perspective Mar. Chem., 78 (2002), pp. 47–63
Hélie J.-F. (2004) Géochimie et flux de carbone organique et inorganique dans les milieux aquatiques de l’est du Canada: exemples du Saint-Laurent et du réservoir Robert-Bourassa -approche isotopique -. Ph.D. thesis, Université du Québec à Montréal.
R.H. Hesslein Insitu sampler for close interval pore water studies Limnol. Oceanogr., 21 (1976), pp. 912–914
L. Holmkvist, T.G. Ferdelman, B.B. Jørgensen A cryptic sulfur cycle driven by iron in the methane zone of marine sediment (Aarhus Bay, Denmark) Geochim. Cosmochim. Acta, 75 (2011), pp. 3581–3599
L. Holmkvist, A. Kamyshny, C. Vogt, K. Vamvakopoulos, T.G. Ferdelman, B.B. Jørgensen Sulfate reduction below the sulfate–methane transition in Black Sea sediments Deep-Sea Res. Pt I, 58 (2011), pp. 493–504
E.R.C. Hornibrook, F.J. Longstaffe, W.S. Fyfe Spatial distribution of microbial methane production pathways in temperate zone wetland soils: Stable carbon and hydrogen isotope evidence Geochim. Cosmochim. Acta, 61 (1997), pp. 745–753
E.R.C. Hornibrook, F.J. Longstaffe, W.S. Fyfe Evolution of stable carbon isotope compositions for methane and carbon dioxide in freshwater wetlands and other anaerobic environments Geochim. Cosmochim. Acta, 64 (2000), pp. 1013–1027
IPCC (2013) Climate change 2013: the physical science basis. In Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (eds. Stocker T. F., Qin D., Plattner G.-K., Tignor M., Allen S. K., Boschung J., Nauels A., Xia Y., Bex V. and Midgley P. M.). Cambridge University Press, Cambridge, UK, and New York, USA.
B. Jähne, G. Heinz, W. Dietrich Measurement of the diffusion coefficients of sparingly soluble gases in water J. Geophys. Res., 92 (1987), pp. 10767–10776
B.B. Jørgensen, R.J. Parkes Role of sulfate reduction and methane production by organic carbon degradation in eutrophic fjord sediments (Limfjorden, Denmark) Limnol. Oceanogr., 55 (2010), pp. 1338–1352
Joshani A. (2015) Investigating organic matter preservation through complexation with iron oxides in Lake Tantaré. M.Sc. thesis, Concordia University.
K. Kawamura, R. Ishiwatari, M. Yamakazi Identification of polyunsaturated fatty acids in surface lacustrine sediments Chem. Geol., 28 (1980), pp. 31–39
J.H. Kroll, N.M. Donahue, J.L. Jimenez, S.H. Kessler, M.R. Canagaratna, K.R. Wilson, K.E. Altieri, L.R. Mazzoleni, A.S. Wozniak, H. Bluhm, E.R. Mysak, J.D. Smith, C.E. Kolb, D.R. Worsnop Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol Nature Chem., 3 (2011), pp. 133–139
J.A. Krzycki, W.R. Kenealy, M.J. DeNiro, J.G. Zeikus Stable Carbon Isotope Fractionation by Methanosarcina barkeri during Methanogenesis from Acetate, Methanol, or Carbon Dioxide-Hydrogen Appl. Environ. Microbiol., 53 (1987), pp. 2597–2599
L. Laforte, A. Tessier, C. Gobeil, R. Carignan Thallium diagenesis in lacustrine sediments Geochim. Cosmochim. Acta, 69 (2005), pp. 5295–5306
L. Lapham, L. Proctor, J.P. Chanton Using Respiration Rates and Stable Carbon Isotopes to Monitor the Biodegradation of Orimulsion by Marine Benthic Bacteria Environ. Sci. Technol., 33 (1999), pp. 2035–2039
D.E. LaRowe, P. Van Cappellen Degradation of natural organic matter: A thermodynamic analysis Geochim. Cosmochim. Acta, 75 (2011), pp. 2030–2042
K.A. Lettmann, N. Riedinger, R. Ramlau, N. Knab, M.E. Böttcher, A. Khalili, J.-O. Wolff, B.B. Jørgensen Estimation of biogeochemical rates from concentration profiles: A novel inverse method Estuar. Coast. Shelf Sci., 100 (2012), pp. 26–37
K. Liu, L. Wu, R.-M. Couture, W. Li, P. Van Cappellen Iron isotope fractionation in sediments of an oligotrophic freshwater lake Earth Planet. Sci. Lett., 423 (2015), pp. 164–172
C.S. Martens, D.B. Albert, M.J. Alperin Stable isotope tracing of anaerobic methane oxidation in the gassy sediments of Eckernförde Bay, German Baltic Sea Am. J. Sci., 299 (1999), pp. 589–610
H. Matsuda Early diagenesis of fatty acids in lacustrine sediments-III. Changes in fatty acid composition in the sediments from a brackish water lake Geochim. Cosmochim. Acta, 42 (1978), pp. 1027–1034
H. Matsuda, T. Koyama Early diagenesis of fatty acids in lacustrine sediments-I. Identification and distribution of fatty acids in recent sediment from a freshwater lake Geochim. Cosmochim. Acta, 41 (1977), pp. 777–783
G.I. Matsumoto Biogeochemical study of organic substances in Antarctic lakes Hydrobiologia, 172 (1989), pp. 265–289
J.V. Mills, G. Antler, A.V. Turchyn Geochemical evidence for cryptic sulfur cycling in salt marsh sediments Earth Planet. Sci. Lett., 453 (2016), pp. 23–32
W.G. Mook, J.C. Bommerson, W.H. Staverman Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide Earth Planet. Sci. Lett., 22 (1974), pp. 167–176
E.G. Nisbet, E.J. Duglokencky, P. Bousquet Methane on the rise—Again Science, 343 (2014), pp. 493–495
M.H. O'Leary Measurement of the isotope fractionation associated with diffusion of carbon dioxide in aqueous solution J. Phys. Chem., 88 (1984), pp. 823–825
E.H. Oelkers Calculation of diffusion coefficients for aqueous organic species at temperatures from 0 to 350°C Geochim. Cosmochim. Acta, 55 (1991), pp. 3515–3529
D.W. Paraska, M.R. Hipsey, S.U. Salmon Sediment diagenesis models: Review of approaches, challenges and opportunities Environ. Modell. Softw., 61 (2014), pp. 297–325
J.W. Pohlman, C. Ruppel, D.R. Hutchinson, R. Downer, R.B. Coffin Assessing sulfate reduction and methane cycling in a high salinity pore water system in the northern Gulf of Mexico Mar. and Petrol. Geol., 25 (2008), pp. 942–951
C.E. Rees A steady-state model for sulphur isotope fractionation in bacterial reduction processes Geochim. Cosmochim. Acta, 37 (1973), pp. 1141–1162
P. Richet, Y. Bottinga, M. Javoy A Review of Hydrogen, Carbon, Nitrogen, Oxygen, Sulphur, and Chlorine Stable Isotope Fractionation Among Gaseous Molecules Annu. Rev. Earth Planet. Sci., 5 (1977), pp. 65–110
M. Saunois, P. Bousquet, B. Poulter, A. Peregon, P. Ciais, J.G. Canadell, E.J. Dlugokencky, G. Etiope, D. Bastviken, S. Houweling, G. Janssens-Maenhout, F.N. Tubiello, S. Castaldi, R.B. Jackson, M. Alexe, V.K. Arora, D.J. Beerling, P. Bergamaschi, D.R. Blake, G. Brailsford, V. Brovkin, L. Bruhwiler, C. Crevoisier, P. Crill, K. Covey, C. Curry, C. Frankenberg, N. Gedney, L. Höglund-Isaksson, M. Ishizawa, A. Ito, F. Joos, H.-S. Kim, T. Kleinen, P. Krummel, J.-F. Lamarque, R. Langenfelds, R. Locatelli, T. Machida, S. Maksyutov, K.C. McDonald, J. Marshall, J.R. Melton, I. Morino, V. Naik, amp, apos, S. Doherty, F.-J.W. Parmentier, P.K. Patra, C. Peng, S. Peng, G.P. Peters, I. Pison, C. Prigent, R. Prinn, M. Ramonet, W.J. Riley, M. Saito, M. Santini, R. Schroeder, I.J. Simpson, R. Spahni, P. Steele, A. Takizawa, B.F. Thornton, H. Tian, Y. Tohjima, N. Viovy, A. Voulgarakis, M. van Weele, G.R. van der Werf, R. Weiss, C. Wiedinmyer, D.J. Wilton, A. Wiltshire, D. Worthy, D. Wunch, X. Xu, Y. Yoshida, B. Zhang, Z. Zhang, Q. Zhu The global methane budget 2000–2012 Earth Syst. Sci. Data, 8 (2016), pp. 697–751
D.T. Shindell, G. Faluvegi, D.M. Koch, G.A. Schmidt, N. Linger, S.E. Bauer Improved attribution of climate forcing to emissions Science, 326 (2009), pp. 716–718
Stumm W. and Morgan J. J. (1996) Aquatic Chemistry. 3rd ed. Wiley.
S. Timsic, W.P. Patterson Spatial variability in stable isotope values of surface waters of Eastern Canada and New England Journal of Hydrology, 511 (2014), pp. 594–604
E. Tipping Cation Binding by Humic Substances Cambridge Univ Press (2002)
B.P. Tissot, D.H. Welte Petroleum Formation and Occurrence (2nd ed.)Springer, Berlin (1984)
L.J. Tranvik, J.A. Downing, J.B. Cotner, S.A. Loiselle, R.G. Striegl, T.J. Ballatore, P. Dillon, K. Finlay, K. Fortino, L.B. Knoll, P.L. Kortelainen, T. Kutser, S. Larsen, I. Laurion, D.M. Leech, S.L. McCallister, D.M. McKnight, J.M. Melack, E. Overholt, J.A. Porter, Y. Prairie, W.H. Renwick, F. Roland, B.S. Sherman, D.W. Schindler, S. Sobek, A. Tremblay, M.J. Vanni, A.M. Verschoor, E. von Wachenfeldt, G.A. Weyhenmeyer Lakes and reservoirs as regulators of carbon cycling and climate Limnol. Oceanogr., 54 (2009), pp. 2298–2314
T. Treude, S. Krause, J. Maltby, A.W. Dale, R. Coffin, L.J. Hamdan Sulfate reduction and methane oxidation activity below the sulfate-methane transition zone in Alaskan Beaufort Sea continental margin sediments: Implications for deep sulfur cycling Geochim. Cosmochim. Acta, 144 (2014), pp. 217–237
W.J. Ullman, R.C. Aller Diffusion-coefficients in nearshore marine-sediments Limnol. Oceanogr., 27 (1982), pp. 552–556
P. Van Cappellen, Y.F. Wang Cycling of iron and manganese in surface sediments: A general theory for the coupled transport and reaction of carbon, oxygen, nitrogen, sulfur, iron, and manganese Am. J. Sci., 296 (1996), pp. 197–243
C. Verpoorter, T. Kutser, D.A. Seekell, L.J. Tranvik A global inventory of lakes based on high-resolution satellite imagery Geophys. Res. Lett., 41 (2014), pp. 6396–6402
U. Wand, V.A. Samarkin, H.M. Nitzsche, H.W. Hubberten Biogeochemistry of methane in the permanently ice-covered Lake Untersee, central Dronning Maud Land, East Antarctica Limnol. Oceanogr., 51 (2006), pp. 1180–1194
M. Werth, Y. Kuzyakov 13C fractionation at the root–microorganisms–soil interface: A review and outlook for partitioning studies Soil Biol. Biochem., 42 (2010), pp. 1372–1384
J.T. Westrich, R.A. Berner The role of sedimentary organic matter in bacterial sulfate reduction: The G model tested Limnol. Oceanogr., 29 (1984), pp. 236–249
M.J. Whiticar Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane Chem. Geol., 161 (1999), pp. 291–314
M.J. Whiticar, E. Faber Methane oxidation in sediment and water column environments—Isotope evidence Org. Geochem., 10 (1986), pp. 759–768
M.J. Whiticar, E. Faber, M. Schoell Biogenic methane formation in marine and fresh-water environments: CO2 reduction vs. acetate fermentation—Isotope evidence Geochim. Cosmochim. Acta, 50 (1986), pp. 693–709
C.R. Wilke, P. Chang Correlation of diffusion coefficients in dilute solutions AlChE J., 1 (1955), pp. 264–270
R.E. Zeebe On the molecular diffusion coefficients of dissolved CO2, HCO3- and CO32- and their dependence on isotopic mass Geochim. Cosmochim. Acta, 75 (2011), pp. 2483–2498
Repository Staff Only: item control page