Badhan, Ajay, Ribeiro, Gabriel O., Jones, Darryl R., Wang, Yuxi, Abbott, D. Wade, Di Falco, Marcos, Tsang, Adrian and McAllister, Tim A. (2018) Identification of novel enzymes to enhance the ruminal digestion of barley straw. Bioresource Technology . ISSN 09608524 (In Press)
Preview |
Text (In Press, Accepted Manuscript) (application/pdf)
1MBTsang-Bioresource-2018.pdf Available under License Spectrum Terms of Access. |
Official URL: http://dx.doi.org/10.1016/j.biortech.2018.03.086
Abstract
Crude enzyme extracts typically contain a broad spectrum of enzyme activities, most of which are redundant to those naturally produced by the rumen microbiome. Identification of enzyme activities that are synergistic to those produced by the rumen microbiome could enable formulation of enzyme cocktails that improve fiber digestion in ruminants. Compared to untreated barley straw, Viscozyme® increased gas production, dry matter digestion (P<0.01) and volatile fatty acid production (P<0.001) in ruminal batch cultures. Fractionation of Viscozyme® by Blue Native PAGE and analyses using a microassay and mass-spectrometry revealed a GH74 endoglucanase, GH71 α-1,3-glucanase, GH5 mannanase, GH7 cellobiohydrolase, GH28 pectinase, and esterases from Viscozyme® contributed to enhanced saccharification of barley straw by rumen mix enzymes. Grouping of these identified activities with their carbohydrate active enzymes (CAZy) counterparts enabled selection of similar CAZymes for downstream production and screening. Mining of these specific activities from other biological systems could lead to high value enzyme formulations for ruminants.
Divisions: | Concordia University > Research Units > Centre for Structural and Functional Genomics |
---|---|
Item Type: | Article |
Refereed: | Yes |
Authors: | Badhan, Ajay and Ribeiro, Gabriel O. and Jones, Darryl R. and Wang, Yuxi and Abbott, D. Wade and Di Falco, Marcos and Tsang, Adrian and McAllister, Tim A. |
Journal or Publication: | Bioresource Technology |
Date: | 28 March 2018 |
Funders: |
|
Digital Object Identifier (DOI): | 10.1016/j.biortech.2018.03.086 |
Keywords: | Carbohydrate active enzymes (CAZymes); rumen nutrition; fiber utilization; Blue Native PAGE; LC-MS/MS; Glycosyl hydrolase |
ID Code: | 983646 |
Deposited By: | Monique Lane |
Deposited On: | 29 Mar 2018 19:10 |
Last Modified: | 29 Mar 2020 00:00 |
References:
A.T. Adesogan, Z.X. Ma, J.J. Romero, K.G. Arriola Ruminant nutrition symposium: Improving cell wall digestion and animal performance with fibrolytic enzymes J. Anim. Sci., 92 (4) (2014), pp. 1317–1330N. Alexandratos, J. Bruinsma World Agriculture towards 2030/2050 Nations, FaAOot U (2012)
K.G. Arriola, A.S. Oliveira, Z.X. Ma, I.J. Lean, M.C. Giurcanu, A.T. Adesogan A meta-analysis on the effect of dietary application of exogenous fibrolytic enzymes on the performance of dairy cows J. Dairy Sci., 100 (6) (2017), pp. 4513–4527
A. Badhan, T.A. McAllister Designer plants for biofuel: A review Curr. Metabolomics, 4 (2016), pp. 49–55
A. Badhan, Y. Wang, R. Gruninger, D. Patton, J. Powlowski, A. Tsang, T. McAllister Formulation of enzyme blends to maximize the hydrolysis of alkaline peroxide pretreated alfalfa hay and barley straw by rumen enzymes and commercial cellulases BMC Biotechnol., 14 (2014), pp. 1–14
A. Badhan, Y.X. Wang, R. Gruninger, D. Patton, J. Powlowski, A. Tsang, T. McAllister Improvement in saccharification yield of mixed rumen enzymes by identification of recalcitrant cell wall constituents using enzyme fingerprinting BioMed Res, Int. (2015), p. 562952
Badhan, A., Y. Wang., T. A. McAllister., 2017. Analysis of Complex Carbohydrate Composition in Plant Cell Wall Using Fourier Transformed Mid-Infrared Spectroscopy (FT-IR), in: Abbott D., Lammerts van Bueren A. (Eds), Protein-Carbohydrate Interactions. Methods Mol. Bio., vol 1588. Humana Press, New York, NY, pp 209-214.
Banerjee, G., Car, S., Scott-Craig, J. S., Borrusch, M. S., Walton. J. D., 2010. Rapid optimization of enzyme mixtures for deconstruction of diverse pretreatment/biomass feedstock combinations. Biotechnol. Biofuels, 3, article 22.
M.K. Bhat, G.P. Hazlewood., Enzymology and other characteristics of cellulases and xylanases M. Bedford, G. Partridge (Eds.), Enzymes in farm animal nutrition, CABI Publishing, Oxford, UK. (2001), pp. 11–60
X. Dai, Y. Tian, J. Li, X. Su, X. Wang, S. Zhao, L. Liu, Y. Luo, D. Liu, H. Zheng, J. Wang, Z. Dong, S. Hu, L. Huang Metatranscriptomic analyses of plant cell wall polysaccharide degradation by microorganisms in the cow rumen Appl. Environ. Microbiol., 81 (2015), pp. 1375–1386
D. Darriba, G.L. Taboada, R. Doallo, D. Posada ProtTest 3: fast selection of best-fit models of protein evolution Bioinformatics, 27 (2011), pp. 1164–1165
R.C. Edgar MUSCLE: multiple sequence alignment with high accurarcy and high throughput Nucleic acid Res., 32 (2004), pp. 1792–1797
Elam, T.E., 2010. Projections of global meat production through 2050. http://www.farmecon.com/Pages/ArticlesandPublications.aspx
R. Gama, J.S. Van Dyk, B.I. Pletschke Optimisation of enzymatic hydrolysis of apple pomace for production of biofuel and bio refinery chemicals using commercial enzymes. 3 Biotech., 5 (2015), pp. 1075–1087
D. Gao, S.P. Chundawat, C. Krishnan, V. Balan, B.E. Dale Mixture optimization of six core glycosyl hydrolases for maximizing saccharification of ammonia fiber expansion (AFEX) pretreated corn stover Bioresour. Technol., 101 (2010), pp. 2770–2781
Goering, H. K., Van Soest. P. J., 1970. Forage Fiber Analyses (Apparatus, Reagents, Procedures, and Some Applications). Agric. Handbook No. 379. ARS-USDA, Washington, DC.
S. Guindon, O. Gascuel FAstTree: a simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood Syst. Biol., 52 (2003), pp. 696–704
P.J. Harris, B.A. Stone Chemistry and molecular organization of plant cell walls M.E. Himmel (Ed.), Biomass recalcitrance: deconstructing the plant cell wall for bioenergy, Blackwell Publishing, Oxford (2008), pp. 61–93
R.D. Hatfield, J. Ralph, J.H. Grabber Cell wall structural foundations: Molecular basis for improving forage digestibilities Crop Sci., 39 (1999), pp. 27–37
T. Hayashi Xyloglucans in the primary cell wall Annu. Rev. Plant Physiol. Plant Mol. Biol., 40 (1989), pp. 139–168
M.E. Himmel, S.Y. Ding, D.K. Johnsonl, W.S. Adney, M.R. Nimlos, J.W. Brady, T. Foust, D., Biomass recalcitrance: engineering plants and enzymes for biofuels production Science, 315 (2007), pp. 804–807
G. Hoondal, R. Tiwari, R. Tewari, N. Dahiya, Q. Beg Microbial alkaline pectinases and their industrial applications: A review Applied Microbiol. Biotechnol., 59 (2002), pp. 409–418
Jones, R.D., Alger, D.T.N., Ghavidel, A., Inglis, D., Abott, D.W., 2018. SACCHARIS: An automated pipeline to streamline discovery of carbohydrate active enzyme activities within polyspecific families and de novo sequence datasets. Biotechnol. Biofuels, in press.
Jung, H.G., 2012. Forage digestibility: the intersection of cell wall lignification and plant tissue anatomy. Proceedings of 23rd Ruminant Nutrition Symposium, Florida, pp. 162-174.
S. Kim, B.E. Dale Global potential bioethanol production from wasted crops and crop residues Biomass Bioenergy, 26 (2004), pp. 361–375
U.K. Laemmli Cleavage of structural proteins during the assembly of the head of bacteriophage T4 Nature, 227 (1970), pp. 680–685
J.-J. Lee, J. Seo, J.K. Jung, J. Lee, J.-H. Lee, S. Seo Effects of ß-mannanase supplementation on growth performance, nutrient digestibility, and nitrogen utilization of Korean native goat (Capra hircus coreanae) Livestock Sci., 169 (2014), pp. 83–87
V. Lombard, H. Golaconda Ramulu, E. Drula, P.M. Coutinho, B. Henrissat The carbohydrate-active enzymes database (CAZy) in 2013 Nucleic Acids Res., 42 (2014), pp. D490–495
R.M. Mauricio, F.L. Mould, M.S. Dhanoa, E. Owen, K.S. Channa, M.K. Theodorou A semi-automated in-vitro gas production technique for ruminant feedstuff evaluation Anim. Feed Sci. Technol., 79 (1999), pp. 321–330
M.C. McCann, N.C. Carpita Designing the deconstruction of plant cell walls Curr. Opin. Plant Boil., 11 (2008), pp. 314–320
S.J. Meale, K.A. Beauchemin, A.N. Hristov, A.V. Chaves, T.A. McAllister BOARD-INVITED REVIEW: Opportunities and challenges in using exogenous enzymes to improve ruminant production J. Anim. Sci., 92 (2014), pp. 427–442
D.O. Natvig, J.W. Taylor, A. Tsang, M.I. Hutchinson, A.J. Powell Mycothermus thermophilus gen. et comb. nov. A new home for the itinerant thermophile Scytalidium thermophilum (Torula thermophila) Mycologia, 107 (2015), pp. 319–327
M. Pauly, L.N. Andersen, S. Kauppinen, L.V. Kofod, W.S. Yolk, P. Albersheim, A. Darvill A xyloglucan-specific endo -β-1,4-glucanase from Aspergillus aculeatus: expression cloning in yeast, purification and characterization of the recombinant enzyme Glycobiol., 9 (1999), pp. 93–100
M. Qi, P. Wang, N. O'Toole, P.S. Barboza, E. Ungerfeld, M.B. Leigh, B. Selinger, G. Butler, A. Tsang, T.A. McAllister, R.J. Forster Snapshot of the Eukaryotic Gene Expression in Muskoxen Rumen—A Metatranscriptomic Approach PLOS ONE, 6 (2011), p. e20521
G.O. Ribeiro, R. Gruninger, A. Badhan, T. McAllister Mining the rumen for fibrolytic feed enzymes Anim. Front., 6 (2016), pp. 20–26
G.O. Riberio Jr., D.B. Oss, H. Zhixiong, R. Gruninger, E. Chijioke, R. Forster, W. Yang, K.A. Beauchemin, T.A. McAllister Repeated inoculation of cattle rumen with bison rumen contents alters the rumen microbiome and improves nitrogen digestibility in cattle Sci. Reports., 7 (2017), p. 1276
J. Seo, J. Park, J. Lee, J.-H. Lee, J.-J. Lee, D.K. Kam, S. Seo Enhancement of daily gain and feed efficiency of growing heifers by dietary supplementation of ß-mannanase in Hanwoo (Bos taurus coreanae) Livestock Sci., 188 (2016), pp. 21–24
Silva, A.J.d., Gómez-Mendoza, D.P., Junqueira, M., Domont, G.B., Filho, E.X.F., Sousa, M.V.D., Ricart, C.A.O., Blue native-PAGE analysis of Trichoderma harzianum secretome reveals cellulases and hemicellulases working as multienzymatic complexes Proteomics, 12 (2012), pp. 2729–2738
Sokhansanj, S., Mani, S., Stumborg, M., Samson, R., Fenton, J., 2006. Production and distribution of cereal straw on the Canadian Prairies. Can. Biosys. Engineering, 48, 3.39-3.46
A. Stamatakis RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies Bioinformatics, 30 (2014), pp. 1312–1313
D.J. Tenenbaum Food vs. Fuel: Diversion of Crops Could Cause More Hunger Environ. Health Perspect., 116 (2008), pp. A254–A257
T.A. Tewoldebrhan, J.A.D.R.N. Appuhamy, J.J. Lee, M. Niu, S. Seo, S. Jeong, E. Kebreab Exogenous ß-mannanase improves feed conversion efficiency and reduces somatic cell count in dairy cattle J. Dairy Sci., 100 (2017), pp. 244–252
G.A. Varga, E.S. Kolver Microbial and animal limitations to fiber digestion and utilization J. Nutr., 127 (1997), pp. 819S–823S
Y. Wang, B.M. Spratling, D.R. ZoBell, R.D. Wiedmeier, T.A. McAllister Effect of alkali pre-treatment of wheat straw on the efficacy of exogenous fibrolytic enzymes J. Anim. Sci., 82 (2004), pp. 198–208
S. Wasiak, V. Legendre-Guillemin, R. Puertollano, F. Blondeau, M. Girard, E. de Heuvel, D. Boismenu, A.W. Bell, J.S. Bonifacino, P.S. McPherson Enthoprotin: a novel clathrin-associated protein identified through subcellular proteomics J. Cell. Biol., 158 (2002), pp. 855–862
P.J. Weimer Why don’t ruminal bacteria digest cellulose fast J. Dairy Sci., 79 (1996), pp. 1496–1502
Y. Yin, X. Mao, J. Yang, X. Chen, F. Mao, Y. Xu dbCAN: a web resource for automated carbohydrate active enzyme annotation Nucleic acids res., 40 (2012), pp. W445–451
B. Zsuzsa, M. Siika-aho, L. Viikari, K. Réczey Evaluation of the role of xyloglucanase in the enzymatic hydrolysis of lignocellulosic substrates Enzyme Microbiol. Technol., 43 (2008), pp. 109–114
Repository Staff Only: item control page